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BLOCK 19 (ABSTRACT CONTINUED)

magnitude of the dynamic contact stresses, wave propagation velocities, envelope I
of load transfer and wave attenuation.

The computational work employed two different numerical techniques to simulate I
dynamic load transfer in the granular materials uider study. The first technique
used the distinct element method whereby the dynamic behavior of an assembly of
particles is modeled with Newtonian rigid-body mechanics using prescribed
interparticle contact laws to account for stiffness and damping interactions.
New dynamic contact law models have been develped for use in the distinct element
wave propagation code. The second method employed the concept of replacing the

granular assembly with an equivalent elastic network which was then analyzed by I
the finite element method using one-dimensional dynamic bar elements. Boundary
and finite element methods were also used to investigate the basic dynamic
interaction mechanisms between particles in contact. Experimental data was used U
to characterize modeling parameters used in the wave propagation codes and to
validate numerical predictions.
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SUMMARY

This final report presents the progress and accomplishments of the three-year

research program sponsored by the Air Force Office of Scientific Research under contract

F49620-89-C-0091 to the University of Rhode Island. This research program has been

involved with wave propagation and dynamic load transfer in heterogeneous granular

materials. The overall objectives of the program were to provide a basic understanding

of the dynamic load transfer processes in particulate media, and how local microstructure

or fabric effect the overall wave propagation through the material.

The research program focused on the dynamic response of particulate media when

they are subjected to explosive loadings with typical duration times of 30 to 500WIs. Such

loadings produce propagating stress waves moving with distinct speeds and attenuating

with propagational distance. In such materials, these mechanical signals are transmitted

locally along a series of complex and discrete paths, established by the media

microstructure. In order to investigate the local microstructural or fabric effects on

dynamic load transfer, a comprehensive experimental and theoretical research program

was established. Studies were conducted on dynamically loaded model granular materials

composed of two-dimensional assemblies of circular disks arranged in a wide variety of

packing geometries. Both particle size and material were systematically varied to study

the effects of heterogeneity and fabric.

The experimental program employed methods of dynamic photoelasticity and

electrical resistance strain gages. Dynamic photoelasticity is an optical technique in

which full-field stress data may be collected at various instants of time using high speed

photography. The method was applied to the present research program by constructing

model granular assemblies of birefringent disks which were dynamically loaded by

exploding a small charge of PETN directly on top of one of the disks. These model

media along with the loading apparatus were placed in the optical bench of a high-speed,

multiple-spark gap camera. This high-speed photographic system operates as a series of

high intensity, extremely short duration pulses of light and provides 20 photoelastic

images at discrete times during the dynamic event. Eraming rates of up to 10" frames per

second are attainable usinzg this system, and the collected experimental data are

photographs of isochromatic fringe patterns at different times as the stress wave passes



through the model granular assembly. Such photographic data provides full-field

qualitative and quantitative information on the nature of dynamic stress distribution, and

allows determination of the wave speed, interparticle contact load transfer, and the wave

spreading characteristics. Because certain segments of our research required opaque

particulate media or very long assemblies of granules, the optical photoelastic technique

was replaced by dynamic strain gae instrumentation. Electrical resistance strain gages

were bonded to predetermined particles in particular model assemblies. The dynamic

signal from the gage gives the transient strain response at that location on the particle.

Although this technique does not give full-field data, it does provide sufficient

information to calculate the wave speed and amplitude attenuation (intergranular contact

load).

The theoretical program conducted in this study employed several numerical

techniques including finite, boundary and distinct element methods. Dynamic

intergranular contact was analyzed using both finite element and boundary element

schemes which investigated the details of the dynamic load transfer between idealized

granular particles. In addition, finite element methods were also used in our elastic

network modeling in which granular media were replaced by equivalent elastic networks.

Each link in the network was a one-dimensional, tension-only finite element, and a

nonlinear solution strategy was developed to calculate the dynamic response of the

network at various time steps.

A large portion of our theoretical work involved the use of the distinct c:eneent

method to simulate or model the behavior of large assemblies of circular disks. In this

method, the contact forces and displacements of an assembly of disks are determined

through a series of calculations tracing the movements of each of the irndividual disks.

For applications to wave propagation, the movements of each of the disks are a result of

the propagation through the medium• of disturbances originating at the loading points.

Newtonian rigid-body mechanics is used to model the translational and rotational! motion

of each disk in a model assembly. The technique establishes a discretized time stepping

numerical routine, in which it is assumed that during each time step, disturbances cannot

propagate from any disk further than its immediate neighbors. Under these assumptions,

the method becomes explicit, and therefore at any time increment the resultant forces on



any disk are determined solely by its interactions with the disks it is in contact. Major

contributions of our distinct element studies were in the development new dynamic

intergranular contact laws which accurately predicted the load transfer in a wide variety

of model particulate materials. We have found that this intergranular contact behavior

establishes the dynamic constitutive response of particulate media under loading rates of

short duration.

Significant coupling of the experimental and theoretical segments of our research

program occurred in which the theoretical modeling provided direction as to what data

would be the most useful to understand the dynamic material response. Experiments

provided important data needed in the characterization (i.e. modeling parameter

determinations) of the developed numerical models. Finally, experimental data has been

collected on numerous model granular assemblies, and this has been used to verify the

predictive capabilities of the numerical simulations.

We have found that local microstructural effects in particulate media do influence

the dynamic load transfer and the resulting wave propagation. Several important fabric

measures have been determine which affect wave propagation and these include: the

relative positions of neighboring particles (normally measured by the so-called branch

vectors); the location and direction of the contact normal vectors between particles; and

the interparticle contact force-deformation laws. The first two of these fabric measures

"are kinematical in nature because they are determined by the particle shapes and packing

geometries. The final fabric measure dealing with the contact mechanics is kinetic, being

determined by the particle material and shape properties and by the contact surface

conditions.

Therefore our studies have determined new and fundamental knowledge of the

dynamic load transfer between particles. Numerous heterogeneous and fabric influences

have been studied including the effects of:

- contact angle or branch vector

- wavelength and pulse duration

- particle material, size and shape

- intergranular contact law

- random granular anisotropy



In addition, we have developed several modeling tools which include dynamic contact
simulators, particulate media generators, and finite and distinct element wave propagation

codes. Details of these accomplishments will be presented in the following sections of

this report.
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BRIEF REVIEW OF RESULTS

During the course of our studies a number of interesting and fundamental

developments were found as related to wave propagation in granular and particulate

materials. Some new experimental and numerical approaches were created to understand

and explain the basic mechanisms of dynamic load transfer in such materials. A brief

review of the important results are listed below which is then followed by detailed

descriptions in the appendix.

Prediction of Dynanmic Contact Loads in Granular Assemblies Using Load Transfer

Coefficients

An experimental-numerical hybrid technique was developed to predict the

intergranular contact load transfer in granular media subjected to explosive loading. The

granular media was simulated by assemblies of circular disks in contact. The peak

contact load transfer coefficients (i.e. the ratio of the maximum output contact load to the

input contact load as a function of the contact angles) of a given particle were obtained

through controlled experimental studies. These coefficients, along with the principle of

superposition, were then used to predict the peak contact loads in several regular as well

as irregular assemblies of disks. The predicted results compared favorably with the

experimental data for several different assemblies.

Granular Contact Law Effects

The microstructural wave propagation behavior of a granular medium was modeled

using the distinct element method. This technique simulates the discrete behavior of the

medium by assuming that the motion of each particle may be modeled using Newtonian

rigid-body mechanics with particular force-deormation and force-deformlation rate contact

laws. The present work provided a comnparison of the effects of various contact laws on

the wave propagational behaviors including wave attenuation and dispersion

characteristics. Specific caes which were studied include linear, non-linear and non-

linear hysteretic force-dc .ormation contact laws along with velocity proportional damping.

Numerical results were compared with experimental data from dynamic photoelastic and

strain gage experiments. Since velocity dependent contact damping is not a reasonable

model for dry chesionless granular media, it was desired to determine if a non-lincar

hysteretic contact law could be used to replace the velocity danmping. Results indicate
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that such a non-linear law does provide a damph•g mechanism . h ich can predict

experimental attenuation data, and that the dispersion characteristics are modeled more

accurately with this hysteretic model.

Effects of Particle Size and Loading Pulse Duration on Dynamic Load Transfer

An experimental and numerical investigation was conduited to study the dynamic,

response of granular media when subjected to loadings with different wavelengths. The

granular media was simulated bv an assembly of circular disks arraiied in a long straight

single chain. The dynamic loading was produced by either an explosive or by impacting I
a projectile from a gas gun onto one end of the granular assembly. It was found from the

experiments that an input wave with a short period of 90pas (wavelength to diameter ratio

of four) will propagate in this granular media with a steady amplitude attenuation. On

the other hand, the long wave (period about 650 pts to 900 [ts) will propagate through this

granular media with first an increase of amplitude (up to 40% higher than the input)

which is then followed by a decrease of amlplitude. In addition, oscillation behavior was

found within the main wave pulse indicating significant dispersion of the input signal.

Numerical distinct element analyses also predicted the same behavior observed in the

experiments. Thus there exists a fundamental change in the local propagational behavior

of waves in granular media for waves with different wave length.

Preliminary Studies on the Effect of the Particle Shape on Wave Propagation

Pheornmeon

Preliminary experimental and numerical investigations have been conducted to

investigate the effect of particle shape and size on the inter-granular load transfer.Studies

include the velocity and wavelength behavior of a stress wave transmitted throu,,h

granular media subjected to explosive loading. Dynamic photoelasticity and distinct

element modeling were used to study this stress wave propagation through granular media

simulated h.. issemblies of elliptical particles in contact. The results indicate that the

shape of the particle has considerable effect on both velocity as well as attenuation of the

stress wave.

The Effect of Preloading on Dynamic Response of Granular Media

A serik.s of experiments were conducted in which an initial biaxial prestress was

applied to the granular assembly before it was subjected to dynamic loading. A biaxial

0



loading fixture was designed which could exert a variety of Ibiaxial loading-s on the

gzranular assembl. The effect of several different ratios of the biaxial stress on wavc

propagation in granular assemblies was studied. The results indicate that the initial load

on the granular media effects both the velocity as well as tile attenuation of the stress

wave.

Dynamic Simulation of Granular Media Using Elastic Networks

A microstruct ural wave propagation model was developed for cohesionless

granular media in which the dynamic load transfer between adjacent particles is simulated

through a special finite element scheme. The particulate media is modeled by an

equivalent elastic network which is constructed by connecting all adjacent particle mass

centers with an elastic load-carrying link. The link behavior is modeled with a one

dimensional finite element that is tensionless and carries end moments and axial ind shear

forces. The resulting solution procedure is nonlinear, and model stiffness and dai.ping

parameters were obtained from dynamic photoelastic experiments. Several types of two-

dimensional assemblies were studied, and these numerical results compared favorably with

experimental data.

Dynamic Interparticle Load Transfer Studies Using Boundary and Finite Element

Methods

The dynamic interparticle load transfer plays a primary role in the propagation of

waves in granular materials, and this contact behavior is an important parameter in our

modeling efforts using distinct and elastic network element methods. In order to obtain

a more complete understanding of this phenomena, theoretical boundary and finite

element analyses were applied to the problem. The dynamic interaction of two or more

elastic particles in contact represents a nonlinear initial/boundary-value problem of

elastodynamics. These problems wexe attacked using boundary discretization schemes

(boundary element methods) and interior discretization schemes (finite element methods)

applied to model the dyna,.iic interaction between two or more idealized circular disk

particles. A dynamic innut was applied to one of the disks, and the transient load transfer

through the contact point(s) was computed. Load transfer profiles for circular and

elliptical particles were calculated, and the results compared favorably with experimental

data.

7



Influence of Local Ilet~e',,geneities on l)ynamic Stress History ill Granular

Assemblies

An experithiental-numerical study was conducted to investigate the effects of

nicrostructural defects, such as inclusions and voids, on the wave propagation phenomena

in granular materials. The granular materials as well as the defects were simulated using

circular disks in both one-and two-dimensional experiments. The defects were of two

types, namely, inclusions and voids. Dynamic photoelasticity and h.gh-speed photography

and numerical distinct element modeling were used to study the effects of these defects

,n the local stress field during wave propagation. Results indicate that both inclusions

and voids produce local wave scattering througyh various reflection mechanisms.

Inclusions increase the wavelength of the loading pulse and produce local attenuation

while voids change the local energy-tranzfer paths.

Wave Propagation in Hleterogenous Granular and Layered Media

Dynamic load trinsfer due to explosive loading in layered and heterogenous

(Tranular assemblies was studied using dynamic photot.lasticity. The heterogenous

granular assemblies consisted of circular discs fabricated from photoelastic materials such

as Homalite 100, PSMl, PSM4, PSM9, CR-39 and nonphotoelastic materials such as

steel, rock and aluminum. The experimental results showed that the local microstructure

control:s the magnitude of load transferred in any given direction. The load transfer

depends not only on the angle between the branch vectors drawn from the mass center

of the contacting granules but also on the acoustic impedance of the contacting granules.

The wave dispersion and scattering produced by tne mismatch of acoustic impedance in

the heterogenous assemblies resulted in more peak contact load attenuation than in a

homogenous granular medium. Systematic experiments were also conducted to quantify

the load transferred from one granule to the other as a function of branch angle as well

as material properties. This information was used to propose an empirical lo,J. transfer

model to predict peak contact loads in heterogenous i.:isemblies.

Dynamic Load Transfer in Virgin and Damaged Particles

An experitriental investigation was conducted Mo study dynamic load transfer in

granular rock media. The granular rock media was modeled as a one-dimensional chain

of disks fabricated from four different types of white Vermont marble. The study focused

x



on the effect of microstructure on transient pulse propagation generated by explosive
loading. During wave propagation dynamic contact strains were recorded ising electrical

resistance strain tg ages. This information was used to calculate wave velocity and

attenuation as a function of the cumulative damage in the disk assembly. The results

indicate a considerable influence of the microstructure and prior loading history on the

wave propagation process. A correlation exists between the stress wave velocity and the

microstructure of the rock material. Also the wave velocity increases initially and then

decreases with the repeated explosive loading.

Wave Propagation in Saturated Granular Media

Some preliminary experiments were conducted to investigate the effect of

interstitial fluid on wave propagation phenomenon. The experiments were conducted with

circular discs and the space between discs was filled by different fluids such as water and

Dow Coming 200 fluids with different viscosities. High speed photographs of the

dynamic event showed that both wave velocity and attenuation are affected by the fluid.

The effect is more prominent on wave attenuation.

Studies of Large Random Assemblies

Distinct element simulations were conducted on large random assemblies in order

Sto investigate the effects of granular anisotropy on the wave propagational characteristics.

Special granular assemblies were computationally constructed by random particulate

media generators. These generators used special algorithms to construct assemblies with

varying degrees of anisotropy as measured by the distributions of local branch vectors

j between adjacent particles. Anisotropy was characterized with respect to two orthogonal

directions in the media. Distinct element results compared wave propagation along these

orthogonal directions, and the findings indicated that media anisotropy does significantly

effect the wave speed and attenuation.I
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APPENDICES

CHAPTER 1

EXPERIMENTAL-NUMERICAL PREDICTION
OF DYNAMIC CONTACT LOADS

1.1 INTRODUCTION

Numerical methods model the behavior of an idealized granular particle by calculating

the motion of individual grains in the assembly as they interact with each other. There

is no assumed constitutive relation between stress and strain in the bulk material. Instead,

the bulk behavior is determined from space and time averages of the loads on individual

granules and their resulting movements. These methods are more flexible in application

than theoretical ones.

Cundall and Strack (1979, 1983) pioneered the distinct element method for handling

large number of particles of any shape. In this method, the interaction of particles is

viewed as a transient problem with states of equilibrium developing whenever the internal

forces balance. An explicit numerical scheme is used to monitor the interaction of

particles contact by contact and to model the motion of the media particle by particle.

Extensions of this method have been made by Walton (1982), Thornton (1985), Sadd

(1989a) and Ting (1989). Swrrano and Rodrigue-Ortiz (1973) and Rodrigue-Ortiz (1974)

developed a numerical model for assemblies of discs and spheres. Contact forces and3 displacements are calculated for equilibrium conditions. Hertzian-type contact compliances

are used for normal forces. Theories of Mindlin and Deresiewicz are used for tangential

forces. In this modelling, the matrix representing the contact stiffnesses must be
reformulated whenever a contact is made or broken and shape changes are assumed

negligible. Inelasticity and friction effects are modeled via a collision operator that

determines post collisional trajectories and rotations for particles involved in

instantaneous, binary, impacts. Hopkins (1985) simulated the effects of particle collisions

in uniform shearing flows by randomly selecting two particles from a large ensemble of

particles representing a statistically meaningful sample of the particles in the flow. One

of the selected particles is temporarily located at the origin and the other is assigned a
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random pre-collision position on a sphere whose radius equals the expected mean

separation for a system at the modeled solid concentration.

An experimental-numerical hybrid technique has been developed in this study. A

transfer function, i.e. the ratio of the maximum output contact load to the maximum input

contact load of a given particle, determined from controlled experiments has been used

to predict the dynamic intergranular contact load transfer in granular media. The granular

materials with systematic as well as irregular packing microstructure as shown in Fig. 1.1

were simulated by assemblies of circular discs. It has been verified by experiments that

at most of the contact points the tangential load is less than 15 % of the normal load.

Thus in this investigation only normal contact loads were considered. Initially a series of

calibration experiments of controlled microstructure were conducted in which the contact

angles between the granules were systematically varied. The data obtained from each

experiment was analyzed to get a load transfer coefficient for a given disc. This

coefficient was obtained for several contact angles and number of contacts per disc. With

various load transfer coefficients determined, a numerical scheme was developed using

the experimental data and based on the principle of superposition. Predictions were made

of the intergranular contact loadings for several model assemblies with different

microstructure as shown in Fig.l.l. Numerical predictions were compared with

experimental data for these models. Although the numerical scheme is very simple, the

predicted results compared fairly well with the photoelastic experimental data.

1.2 LOAD TRANSFER FORMULATION

The microstructure of a granular medium can be characterized by branch vectors

drawn between the mass centers of adjacent discs as shown in Fig. 1.2. The angle 0 is that

between any two neighboring branch vectors and is denoted as the contact angle. It has

been shown by Shukla et al. (1988) that the dynamic load transfer phenomena in granular

media are strongly dependent on the contact angles made by the adjacent branch vectors.

Experimental fringe patterns from their work obtained in a hexagonal closed packing

(HCP) granular assembly for the geometry of Fig.l.lb are shown in Fig. 1.3b. Normal

contact load profiles of a typical disc, A, in this HCP model are shown in Fig. 1.4. Wave

eneigy entering at point I shows maximum transfer across point 2 which is directly ahead

of point 1. Although contact points 3 and 4 make the same angles with the input point
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1, the contact load is higher at point 4 than point 3 due to the superposition of loads from

the other discs. No load transfer occurs across points 5 and 6 as the contact angles are

larger than (n/2) for these points. It is apparent that load transfer in a granular medium

occurs primarily through contact mechanisms between adjacent particles, and thus various

discrete load transfer paths will be established through the space that the media occupies.

These load transfer paths are a result of the geometry of the granular assembly. and are

especially related to the locations of the contacts of the various particles. For the dynamic

case, inertia becomes significant and the location of the mass centers of the particles will

also be important in the load transfer process. For the cases under study with circular

discs, the branch vectors defined in Fig.1.2 completely describe the relative location of

both the contact points and the particle mass centers. Thus it seems reasonable to develop

a load transfer theory based upon the use of the branch vectors to predict the transmission

of dynamic signals from disc to disc. The theory to be proposed is intended to predict the

peak inter-granular load transfer between discs in model assemblies of granular media.

Referring to Fig. 1.2, the peak load transfer through the j-th contact of any arbitrary

disc may be written in the form,

P oj = Ci P, (1.1)

where P()j is the peak output load at the j-th contact, P, is the peak input load to this disc,

and C1 is defined to be the load transfer coefficient which relates these peak inter-granular

loads. Clearly, this load transfer coefficient depends on various contact angles made by

the branch vectors of this disc. For discs of equal diameter, the maximum number of

3 possible contacts is limited to six. Furthermore, as mentioned previously, experiments

have shown that when the contact angle is greater than or equal to 90", no load transfer

I will occur and thus Ci will be zero for these cases. Therefore for equal diameter discs,

the range of the index j will be limited from one to three, and the load transfer coefficient

[U will be a function of at most three relative contact angles, i.e. C, = C (0, ,02,03), where the

angles 0,, 02, 0, are defined in Fig. 1.5 relative to the input direction of the disc. If in

U any particular assembly one of these angles becomes larger than 90", then this contact is

removed from the analysis;. Consequently, for a given input point, at most only three
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output contacts will be able to transmit the dwnamic signal to adjacent discs.

1.3 EXPERIMENTAL DETERMINATION OF LOAD TRANSFER COEFFICIENTS

In order to determine the peak contact load transfer coefficients, C1(01 0", 03),

experiments were conducted on the three groups of models, that is, the two, three and

four contact point models. A general four contact point model is shown in Fig. 1.5. In

experiments of the two contact point model, contact angles 0, and 0Q were kept at 900.

Only contact angle 02 was systematically varied from 0' to 900. In experiments of the

three contact point model, contact angle 03 was kept at 900, and both contact angles 0,

and 02 were systematically varied. In experiments of the four contact point model, all

three contact angles 0 , 02 and 03 were systematically varied. For simplicity the granular

materials were simulated by assemblies of 25.4 mrnm, 6.35 mm thick discs of Homalite-

1(X). The experimental models were placed in the optical bench of a high speed multiple

spark gap camera. The camera was triggered at some prescribed delay time after igniting

the explosive. The high speed photographic system operated as a series of high intensity,

extremely short duration pulses of light and provided 20 isochromatic fringe images at

discrete times during the dynamic event.

The isochromatic fringes photographed during the experiments were analyzed by

the numerical method developed by Shukla and Nigam (1985) to determine the contact

length and friction factor from the full field photoelastic fringe patterns. These obtained

values were substituted in the Hertz stress field equations and the contact stresses were

numerically integrated along the contact length to obtain the normal and tangential contact

loads.

For a two contact point model, contact angles 0, and 03 are 900 and C, and C, are

therefore identically equal to zero. For a three contact point model, 03 is taken to be 900

and hence C, is identically zero.

The transfer coefficients Cj thus obtained from the three groups of experiments

3 were plotted as a function of the contact angles 0,. 0, and 0, as shown in Figs. 1.6 to 1.8.

In Fig. 1.6, curve I represents the ratio of P(,2/P, vs. contact angle 0. when both the contact

angles 0, and 03 are equal to 900. Since both Po) and PO are zero, it actually represents

the transfer coefficient C2 of the two contact point model. The remaining curves in Fig.

I
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1.6 represent the transfer coefficients C, vs. contact angle 0, of the three contact point

model when contact angle 0, is 90' and 0, is also a constant but less than 90' (it is equal

to 300, 450, 600 and 750 respectively). Fig, 1.7 shows the transfer coefficients C, vs.

contact angle C, for the four contact point model when the contact angles 02=0° with

various values of 0•, while Fig.1.8 shows the transfer coefficient C, vs. contact angle 0,

for the same four contact point model. The transfer coefficient C, for the four contact

point model can be obtained easily using Figs.1.6 and 1.8 and the property that

C 1(0 1,0 2,9()) = C2(02,0 1,90') and C,(0 1 ,0°,03 ) = C(0,0, 0.0).

1.4 NUMERICAL IMPLEMENTATION

The experimentally determined peak contact load transfer coefficients were used

to construct a numerical scheme capable of predicting dynamic load transfer in granular

aggregate assemblies of discs. Several assumptions were used in this numerical method.

First, only nonnal contact loading was considered in this study. The tangential contact

loads were assumed to be zero. Next the speed of propagation of the mechanical signal

is assumed to be constant, a fact which has been observed from the experiments. The load

transfer coefficients are taken to be independent of the loading amplitude. Finally, simple

superposition of loading, as shown in Fig.1.9, is used when more than one input contact

load occurs on a given disc. Figs.1.6 to 1.8 combined with a Lagrangian interpolation

method have been used to obtain all the necessary transfer coefficients to predict the peak

contact loads in granular media. As an example consider the transfer coefficients for a

four contact point model (0,=60', 02=0° and 03=650) as shown in Fig. 1.5. Since 01 and

0, are equal to the two contact angles of curve 4 in Fig. 1.8, the transfer coefficient C, can

be obtained directly and is equal to 0.273. In contrast, the transfer coefficient C, can not

be obtained directly. However it can be obtained by using the curves in Fig. 1.8 combined

with the Lagrangian interpolation method and the symmetrical property C1 (600,00,65°)

C3(650 ,0W,60°). Using the values C,(600 ,00 ,60') = 0.28, C,(70'.0',60') = 0.294,

C3(80°0 °0,60°) = 0.32 and ear Lagrangian interpolation method, we get C,(60°.00 .65°)

C3(65°,0 0 ,600 ) = 0.286. The transfer coefficients C, can be obtained directly from curve

3 in Fig. 1.7, C, = C,(600 ,00,650 ) = 0.775.

After the three transfer coefficients have been obtained. the relevant output peak

contact loads for the four contact point model can be computed easily. According to the
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definition of the peak contact load transfer coefficient, the three output peak contact loads

P,,1, Po2 and P,,, at contact points 1, 2 and 3 are calculated as follows,

P., = CIP,

P 2 = C2P, (1.2)

= C CP

1.5 RESULTS AND DISCUSSION

The experimental-numerical hybrid method was used to predict peak contact loads

at every contact point in various models of granular media. Four different microstructural

packings illustrated in Fig.l.1 were used in this study. Experimental fringe patterns

obtained for each of the microstructures are shown in Fig.1.3. The comparison of the

numerical and experimental results are shown in Figs.I.10 to 1.13.

Fig.l.3a shows a sequence of seven photographs obtained as the wave travels in

a single chain of granular media as shown in Fig. 1. la. In this geometry each particle has

two contact points, hence only one transfer coefficient is needed to model this geometry.

This transfer coefficient is obtained from Fig.1.6, C = C 2(90(,0°,90() = 0.97. The peak

contact loads at each contact point can be determined as follows,

P2 = C AP1

P1 = C2P2 = C22P, (1.3)

Pn = C2° n PI

The comparison of numerical and experimental peak contact loads in the single

chain is shown in Fig.l.10. The average peak contact load error, {(Pxp,-Pnum )/Pexp*l(X)},

for this model is computed to be 5%. The results are in very good agreement because

most of the assumptions made in our numerical model are satisfied.

Fig. 1.3b shows a photograph obtained as the wave travels in a hexagonal closed

packing (HCP) granular medium as shown in Fig. 1. lb. In this geometry each particle has
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Isix contact points. The major load in this assembly is transferred by two primary chains,

I and 2, shown in Fig. 1 lb. Experimental data showed that the tangentia1 contact loads

were very close to zero for the primary chains, hence they behaved similar to the single

chain as:;emblies. In the HCP model there are only two independent contact angles, 0,

0, = 60' and 02 = 00, with respect to the input load. Thus only two transfer coefficients

were needed for the HCP model, From Figs. l.7 and 1.8, we obtain the two transfer

coefficients, C1 (600,00,600) = C3(600 ,00,60')= 0.28, C,{60°,0°,60°) = 0.75. These

coefficients were used to determine the peak contact loads throughout the assembly. The

comparison of numerical and experimental results of the peak contact loads for the HCP

I model is shown in Fig. 1. 11. The average error of the peak contact loads for this model

is 13%, with the average error along the center line of the primary chain being only 6%.

I Fig. l.3c shows a photograph Obtained as the wave travels in the geometry of

Fig.1.lc, which will be referred to as a half hexagonal clo.sed packing (HHCP) granular

31 medium. In this geometry a particle has eithe- four or five contact points. It is observed

that most of the energy was transferred through a vertical column consisting of the HHCP

cells under the explosive and several horizontal chains as shown in Figs.1.3c and 1.12.

The peak contact loads were obtained by the same method discussed previously. The

comparison of numerical and experimental peak contact loads is shown in Fig. 1.12. It was

found that the average error for this model is 12%. However the average error along the

center line of the horizontal chains is only 7.5%.

Fig.1.3d shows a photograph obtained as the wave travels in an irregular packing

granular medium as shown in Fig.l.ld. In this geometry particles have contact points

ranging from two to six. The fringes in Fig. 1.3d reveal a complex nature of load transfer

phenomenon. The energy transfer showed no preferential direction in this model. In the

former three models, the tangential contact loads, especially along the main path of the

energy transfer, were quite small. However in this irregular model, at the contacts near

the explosive point, the fringes appeared unsymmetrical with respect to the contact points.

So it appears that sizable tangential loadings existed in this case. Away from the

explosive point, the fringes showed the tendency to become symmetric with respect to the

3 contact points. Again from Figs. 1.6 to 1.8 all the transfer coefficients necessary for the

determination of the peak contact loads in the irregular packing granular medium were

2
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obtained. The comparison of numerical and experimental peak contact loads is shown in

Fig.1.13. The tangential contact loads tend to increase the average error in the peak

contact loads. This error was computed to be 19.0% for this model.

1.6 SUMMARY

A hybrid experimental-numerical technique has been developed to predict dynamic

intergranular contact loads due to explosive loading in different assemblies of circular

discs. For a known geometrical arrangement of discs the technique can predict contact

loads at any point in the assembly for a given input loading. The method utilizes

experimentally generated load transfer coefficients along with simple linear superposition

in space. The results from this scheme are compared with those obtained experimentally

using the method of dynamic photoelasticity. In general, the results are in good

agreement for regular packings of the discs. However, for an irregular packing the

agreement is marginal, and this is primarily due to the fact that the numerical scheme

currently does not take into account tangential contact loads which were quite large in

random arrangement. Further, the superposition method does not account for any angular

dependence of wave length of the loading pulse. It was shov'r, ,rN SL~kla et al. (1988) that

the duration of contact loads is dependent on :'ie contact angles. Thus to obtain better

predictions, superpositions must be used : oth in space as well as time.
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CHAPTER 2

CONTACT LAW EFFECTS ON WAVE PROPAGATION INI- PARTICULATE MATERIALS USING DISTINCT ELEMENT MODELING

1 2.1 INTRODUCTION

It has been well established (Oda et.al., 1982, Sadd et.al., 1989a, and Shukla

et.al.,1988a) that load is transferred in a dry granular medium primarily through contact

mechanisms between neighboring particles. Using such a discrete concept many authors,

e.g., Digby (1981), Thornton and Barnes (1986), Patrakis and Dobry (1988), Patrakis,

Dobry, and Ng (1988), Kishino (1988), Chang and Ma (1990), Ting and Corkum (1992),

and Adely and Sadd (1992) have studied macroscopic quantities such as stress, strain, and

effective elastic moduli from the microstructural standpoint for quasi-equilibrium cases.

For the dynamic case, our previous studies (Shukla et.al., 1991, Zhu, et.al., 1991) have

shown that the propagation of mechanical waves through such a medium occurs along a

complex network of paths determined by the material's granular microstructure. Showing

profound directional dependency in block-like materials, the recent numerical simulations

carried by Walton et.al. (1991) also support this concept. The process of load transfer is

determined by the particular contact interactions between the various grains in the media,

and these interactions are primarily controlled by the particle's material properties and the

3 local geometric arrangements of the particles. Previous research (Sadd, et.al., 1989a,

Shukla, et.al., 1988a, 1991) has indicated that the wave speed will be primarily

determined by the granule elasticity and mass density, while the wave amplitude will be

most dependent on the geometry of the selected paths of propagation. Thus local

microstructure or fabric plays a dominant role in the transmission of mechanical loadings

through such materials.

Computer simulations employing the distinct element method as well as

experiments using dynamic photoelasticitY and strain gages have been conducted to

investigate the effects of the local microstructure on wave propagation in granular media.

Specific contact laws governing the interactions between granules are necessary for such

computer simulations. The present study is concerned with the specific contact laws

which govern the dynamic constitutive behavior. Results using linear, nonlinear and
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nonlinear hysteretic normal contact laws with a nonlinear hysteretic tangential contact law

are given. Computational and experimental studies have been conducted on specific

aggregate assemblies composed of circular disks in order to simulate granular and

particulate materials.

2.2 THE DISTINCT ELEMENT METHOD

A numerical scheme originally developed by Cundall and Strack (1979), called the

distinct element method has been successfully used to simulate granular media by

modeling the dynamic behavior of large assemblies of spheres, circular disks, and blocks

(Thornton and Randall, 1988, Sadd, et.al., 1989a, Petrakis, et.al., 1988, Walton, 1991).

The distinct element meth I is a simplified modeling concept which uses Newtonian

rigid-body mechanics to model the translational and rotational motion of each disk in a

model assembly. Particles are allowed to have overlapping contact, and contact forces

are developed as a result of particular stiffness and/or damping characteristics. The

technique establishes a discretized time stepping numerical routine, in which granule

velocities and positions are obtained from numerical integration of the computed

accelerations. It is assumed that during each time step, disturbances cannot propagate

from any disk further than its immediate neighbors. Under these assumptions, the method

becomes explicit, and therefore at any time increment the resultant forces (and thus the

accelerations) on any disk are determined solely by its interactions with the disks it is in

contact. For applications to wave propagation, the movements of the individual disks are

a result of the propagation through the medium of disturbances originating at particular

input loading points. Consequently, the wave speed and amplitude attenuation

(intergranular contact force) will be functions of the physical properties of the discrete

medium, i.e. the microstructure.

In order to describe the method, consider the case of two typical disks in contact

as shown in Fig. 2.1. The position, velocity, acceleration, angular velocity, angular

acceleration, radius, and mass of disk I are labeled as: r,, a1, (i,, (x,, R, and mi, with

like notations for disk 2. The unit normal vector n and unit tangential vector t are

defined as shown, and these establish the normal and tangential directions used for the

contact analysis.

The normal component of relative contact velocity between the two disks is given
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by

v, = (v, - v2) n(2.1)

while the tangential relative velocity is

vt = (vI - v2) - t - (o)1Rl + O2R,) . (2.2)

Using a finite difference scheme with constant properties over the time interval,

the relative velocities may be integrated with respect to time to yield the incremental

relative normal and tangential displacements, i.e.

A8- v.At = [(vI - v2) • n]At
(2.3)

A8t= vAt = [(v1 - v2) t - (o),R 1 + o(2R 2)]At .

In a similar way, i- .bsolute linear and angular velocities may be computed from the

accelerations :.,ing the relations

Av = a At
(2.4)

Ao = x At

Through allowable deformations, the disks in contact are permitted to overlap with

one another such that the distance between their centers will become less than (RI + R2),

and contact forces will therefore exist between them. A particular contact force-

displacement law will then be necessary to calculate the forces on each disk in the

assembly. In general the contact law between two granules can be written as two

equations expressing the normal and tangential contact forces by

F = Fn(8n,vl,,,,v,)
(2.5)

F, = F,(6,,vn,6,,v,)

where k, and 8, are the relative normal and tangential displacements between adjacent
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disks in contact, and vn and v, are the relative normal and tangential velocities. The

contact forces may also be history dependent. A Coulomb-type friction law is

incorporated to deal with the tangential loading. This law is defined by

(F,)mA, = j. Fn + c , (2.6)

where g. is the coefficient of friction and c is the cohesion between the two disks. If the

magnitude of F, found from equation (2.5)2 is larger than (FL)md, then F, is set equal to

(Ft)mx

Using Newton's second law of motion, the linear and angular accelerations of each

disk at each time interval can be determined. For disk 1, such an application would give

(2.7)
IM, =Iloq,

where IF, and IM 1 are the resultant force and moment on disk 1, and I is the moment

of inertia of the disk. Equations (2.7) can thus be solved for the accelerations a, and cc

over each time increment. With the accelerations known, the velocities follow from

application of equation (2.4) and the relative displacements can then be computed from

equation (2.3). This leads to new values of the contact forces through relation (2.5) for

the next time increment, and the cycle is repeated again for each disk (see flow chart in

Fig. 2.2). In this manner, large assemblies of disks can be analyzed in a reasonable

amount of computer time.

2.3 CONTACT LAW MODELS

It is obvious that the propagational characteristics depend on the process of load

transfer between disks. Since the load transfer is governed by the contact mechanism of

the disks, the characteristics will depend on the contact laws (2-5), and thus we wish to

investigate the effects of using several different types of contact laws. Figure 2.3

illustrates the cases to be considered in this work

2.3.1 Normal Contact Law

For the static case the normal contact law can be determined by Hertz contact

theory or from experiments. However, for the dynamic case in which the load is of short
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duration, wave motion effects make it difficult to determine the contact law. In some of

our previous work (Sadd, et.al., 1989a), a static normal contact law has been modified for

use in dynamic cases. In general the normal contact law given by equation (2.5),

represents a variety of cases including both displacement and velocity dependent contact

forces. Velocity dependent damping acting like dashpots will produce energy dissipation

which is a needed ingredient to model real granular materials, and two forms of such

damping have been introduced in (Sadd, et.al., 1989): a local damping proportional to the

relative disk velocities, and a global damping proportional to the absolute velocities.

Likewise, a hysteretic normal contact law depending only on the relative displacements

will also produce energy dissipation. An appropriate contact constitutive law should have

both the correct stiffness to be able to model the proper wave velocities and the correct

dissipation mechanisms to accurately predict wave attenuation. Three specific cases

shown in Fig. 2.3a,b,c will now be presented to demonstrate some of these basic features.

a. Linear Normal Contact Law

If the assumption is made that there is no deformation out of the contact area and

plane strain conditions exist, then application of Hertz contact theory yields a static linear

contact law between the forces and the relative displacement of two disks in contact. If

it is further assumed that the dynamic contact stiffness is scalable from the static Hertz

value, then the normal contact law reads

F,, = K., = oc K, ,( (2.8)

where K, is the dynamic stiffness, cc is a stiffness ratio which is determined from

experiments, and Kn(s) is the static contact stiffness from Hertz theory given by

K(S) - TchEIE 2  (2.9)01 2(El +E
2 )

with h being the disk thickness, and E, and E2 being the elastic moduli of the disks in

contact. This particular contact law is shown in Fig. 2.3a.

Incorporat;ng the distinct element method with this linear contact law required that

some forms of local or global damping be included in the model. For dry granular

materials the global damping can be neglected, and the local damping is taken to follow

33



a simple linear law (linear viscous dashpot) of tile form F-, = C,,v,,, where C,,, is called

a local damping factor. In order to collect calibration data to determine the values of oX

and C., photoelastic experiments were performed on a single straight chain of disks. Fig.

2.4 illustrates typical photoelastic isochromatic fringe patterns of the wave propagation

at various instants of time for this simple configuration. Appropriate values for the

normal stiffness and damping coefficients were thus determined to match the data from

these calibration tests. In particular the normal contact stiffness value is primarily related

to the wave speed, and this stiffness value was therefore determined by matching the

model results with the velocity data (about 1010 m/s) from the experiments. In a similar

fashion, the local damping constant is related to the wave attenuation, and thus it was

found by matching the model results with amplitude attenuation data. The single straight

chain consisted of 40 Homalite-l00 circular disks with 25.4mm (1 inch) diameter and a

6.35mm (1/4 inch) thickness which were explosively loaded. To simulate the experiments,

the theoretical nmodel input loading used a triangular time profile with a 60 pIs duration

and a peak value of 1000 N, and the time increment was taken as At = 2ý.s. Values of the

stiffness and damping determined from the experiments along with the particle mass

density were K,, = 6.4 x 106 N/m, C1 = 32 N s/m, and p = 1.2 x 10' Kg/m3 .

Using these parameters, model predictions for the single straight chain are shown

in Figs. 2.5 - 2.7. The time profiles of normalized contact load at every fourth contact

point are shown in Fig. 2.5. It was observed that the linear stiffness law with linear

velocity dependent damping gave wave speed and amplitude results which generally

match with the experimental data (Sadd, et.al., 1989). However as illustrated in Fig. 2.5,

this model produces unrealistic wave form dispersion. The period of the original 60 us

input wave profile was lengthened to more than 200 uts during the propagation over 40

disks, and this phenomena was not found in the experiments. With damping removed

from the model the normalized contact load histories for every fourth contact point are

shown in Fig. 2.6, and it can be seen that this model also produced attenuation. Further

investigation showed that the attenuation for the case without damping is not due to any

net energy loss but rather it indicates that the model overpredicts the dispersion, thus

leading to a decrease in the peak contact forces. The potential, kinetic and total energies

in the straight chain assembly are shown in Fig. 2.7 for this case. It is seen that the total
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energy quickly becomes a constant value, and therefore the dispersion characteristics of

the model are creating the peak amplitude attenuation. With the high dispersion

associated with this model, the wave profile rapidly spreads producing an increasing wave

length with propagation distance. This characteristic is not consistent with our

experimental data, and thus indicates that a new model should be developed with a

nonlinear contact law.

b. Nonlinear Contact Law

Based on the above observations, a nonlinear contact law was constructed in an

effort to eliminate the highly dispersive characteristics of the previous linear model.

According to Johnson (1985) the relative displacement between disks in contact cannot

be determined by only considering the deformation near the contact point. Instead an

elasticity solution that considers the shape, size, and the way in which the disk is

supported is required. Johnson, using a superposition of Hertz theory, a uniform stress

field, and a point-loaded disk problem, derived a nonlinear relationship between the

contact force and the center-point displacement.

A simplified relation that appears to match with the approximate solution from

Johnson, is of the form

F. = OCr~p (2.10)

where it0 and p are model parameters dependept upon the material and geometry of the

disk. Generally p > 1, thus providing a stiffness that increases with load, and this behavior

is shown in Fig. 2.3b.

Distinct element results for a single straight chain using this nonlinear model are

shown in Figs. 2.8 and 2.9. Fig. 2.8 shows the contact load history of every fourth

contact point for the single straight chain without damping. The values of c0 and p are

chosen as 3x108 N/mn 4 and 1.4 respectively, so as to yield a wave speed that matches

with the experimental result. It is seen for this case that all contact loads, except the first

one, have the same shape and the same peak value, i.e. no dispersion and no attenuation.

The attenuation that exists at the very beginning of the chain is a result ')f the

establishment of a stable wave motion from the input explosive source. Fig. 2.9
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I illustrates the attenuation behavior for the nonlinear case with linear velocity dependent

damping. Including such damping clearly again produces excessive dispersion, and since

we must have some form of damping in the model to correctly predict wave attenuation,

I this particular nonlinear law cannot accurately predict the resulting wave forms and thus

must be modified.

I c. Nonlinear Hysteretic Normal Contact Law

It is apparent from the previous case that the nonlinear stiffness law with velocity

dependent damping will not correct the over-prediction of wave form dispersion.

Furthermore the basic issue of velocity dependent damping would indicate that some form

of viscous mechanism is present in the material. For dry granular media under study,

there does not seem to be physical evidence of such a damping mechanism.

I Consequently, a different normal contact law is proposed which produces deformation

dependent damping through a norlinear hysteretic law accounting for different loading

I and unloading behaviors. The basic concept is illustrated in Fig. 2.3c, in which the

unloading path lies below the loading curve and thus energy is lost during a cycle in

proportion to the amount of deformation of each disk. For this case the velocity

dependent damping (i.e. the dashpot) will be dropped from the model, and the normal

contact law would read,

F,.L = a ..................................... loading

F F = v8 .................................. unloading, reunloading
(I • F 1 + (I-.3)F, .. . . . . . . reloading

If in the loading path the maximum value of the force is recorded as F" ma, then the

reloading is defined as the state in which the load is increasing but its value is smaller

than F The reloading p th will join the loading path at Fn,,, and additional loading
follows the origional loading path. The value of q is determined by

Sq --(a ')m.)2 (2.12)

where A is a constant to be determined and &')n.,,X is defined as the value of 6n at contact

point i when the normal contact force at the point has attained its maximum value. The

value of 1 is given by
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n mn (2.13)

11 max -- min

with 8°'. is the current value of the relative normal displacement at contact point i, and

(i). in indicates its minimum value in the previous unloading or reunloading path. At the

moment reloading begins, 80), = 5()n ,i and P = 0. The value of P3 increases with i) n, and

it reaches a maximum value of 1 when 8(',) = 8"') mx which indicates that new loading

will begin. The values of x,, p, and A are related to material and geometric properties of

the disks, and will be determined from experimental calibration tests. The parameter 0X,
however, is determined in order to make the unloading path initiate at the peak point of

loading, see Fig. 2.3c.

Model results for the nonlinear hysteretic case consisted of simulations of the

single straight chain. Again the parameters needed in the numerical model were

determined from the experiments yielding: p = 1.4, A = 8500 m-', CXk = 3x10 8 N/im' 4. With

these parameters, the numerical predictions matched well with experimental data for the

wave speed, wave attenuation, and the wave dispersion. These results will be discussed

in section 2.4.

2.3.2 Tangential Contact Law

To simulate the wave motion in two dimensional assemblies, both a normal and

a tangential contact law are required. The appropriate normal contact law was given by

equation (2.11). The tangential contact law is considerably more complicated and thus

more difficult to derive since the current value of the tangential contact force may depend

on its history and the amplitude of the normal contact force. In addition there could be

partial slip within the contact area. A tangential contact law proposed by Walton et.al.

(1991) will be used here with some modifications. The basic concept embedded in this

contact law is that the effective tangential contact stiffness decreases with an increase of

I the tangential force, and goes to zero when full sliding occurs. The tangential contact is

thus written as,

I N+1 = FtN+KA51 N, (2.14)

I
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I l where, F1N and A8," are the tangential force and the relative tangential displacement

increment at the N-th time step, and K, is the tangential contact stiffness which is given

[ by

F, -F,"
Ko 1 - F ................. A8 (0

SKFl - F1 "(2)5

Ko (I - F.F ............... A5, < 0
ýitF, + F: 1

Here, Ko and y are constants to be determined, F, is current tangential force, and F,*,

which is initially set to zero, takes the value of F, when the A6, changes sign. If the

normal force, F, changes during contact, the value of F," will be scaled in proportion to

the change in the normal force. Fig. 2.3d illustrates the relationship between F, and 8,

when F, is kept as a constant. In our numerical simulations, the values of K0, y, and g.

are set to 5x10 5 N/m, 0.3, and 0.5 respectively, such that the numerical results match with

the experimental data obtained in a two dimensional hexagonal close packing assembly

shown in Fig. 2.12.

2.4 NUMERICAL RESULTS

2.4.1 One Dimensional Cases

As a calibration, once again the single straight chain was used in the numerical

simulation, and a triangular time dependent impulse with a 6011s period was used to

simulate the explosive loading in the experiments. Results from the distinct element model

are shown in Figs. 2.10 and 2.11. Fig. 2.10 gives the profiles of contact loads of every

fourth contact point versus time. The wave speed is approximately 990 m/s, the duration

of contact load at each contact point is about 931is, so the ratio of wavelength to disk

diameter is around 3.6. The experimental results gave a wave speed of 1010 m/s and a

ratio of wavelength to disk diameter of about 3.5. Fig. 2.11 compares the numerically

predicted peak contact load versus distance with the data from the experiments. The

numerical results match the experimental data quite well with difference less than 5%.

Both the numerical model predictions and the experimental data show that the attenuation
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U is larger at the contact points near the point of input loading. Also some dispersion

occurs near the explosive loading point, and this is probably due to the establishment of

the propagating profile from the explosive time input. It appears that the wave motion

signal needs to propagate a small distance in order to achieve a stable profile state.

2.4.2 Two Dimensional Cases

The distinct element method with the hysteretic nomaal contact law (2.11) and

tangential contact law (2.15) was used to modei wave propagation in several two

3 dimensional granular assemblies. In order to compare with experimental results, the same

disks and input loading were used as those in the one dimensional single straight chain

*n case.

a. Hexagonal Close Packing (HCP) Assemblies

One of the assemblies studied is the hexagonal close packing geometry shown in

Fig. 2.12. The disks in the close packed assembly have six contacts with neighboring

disks. Given in Table 2.1 are the numerical predictions for the peak normal contact forces

for cases both with and without tangential force modeling. As a comparison, the normal

3 contact loads from the experiments are also given in the Table. It is apparent that

including tangential contact interactions improves the results with a change of average

relative error from 14.5% to 11.8%. The maximum Ft was recorded at the contact points

(disks #13 : #12) and (disks #14 : #15). The same assembly with a void is shown in Fig.

n 2.13, but the position and the direction of input loading have been changed. The void was

created by removing a disk from the assembly. Table 2.2 gives the distinct element

analysis results for this case. It can be seen that including tangential forces in the model

decreased the relative error of the normal contact loads especially around disks #28 and

#29 where significant tangential forces would be expected. Another HCP assembly with

three voids is shown in Fig. 2.14. Numerical predictions and comparisons are given in

Table 2.3. Again the tangential contact model improved the comparisons with the

experimental results especially at the contact points near the voids.

n b. Irregular Assembly

An irregular assembly which was first used in the experiments is shown in Fig.

1 2.15. Due to the irregular packing geometry of the assembly, intergranular tangential loads

will exist at many contact points and will play a more important role than in the other
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assemblies previously presented. The comparison of numerical predictiors with

experimental results is given in Table 2.4. Without tangential contact forces the average

relative error of peak normal contact forces is 20.7% which is larger than those in the

HCP assemblies. Using the tangential contact force model, the error difference is reduced

to 14.5%. The maximum tangential loading occurs at the contact point between disk #19

and #29, and its value is about two times that found in the HCP assemI'y previously

discussed.

2.5 CONCLUSIONS

Three different normal contact laws have been incorporated into the distinct

element numerical code used to simulate the dynamic behavior of granular materials.

These contact laws provide the basic microstructural constitutive behavior that governs

the way mechanical signals will propagate from particle to particle. The various laws

must account for the proper stiffness and damping characteristics to accurately predict the

wave speed and inter-granular wave attenuation/dispersion. The three cases included:

simple linear stiffness/linear velocity dependent damping; nonlinear stiffness/linear

velocity dependent damping; and nonlinear hysteretic behavior. Comparisons of the

numerical predictions with each other and with experiments were made for a simple

geometry of single disk chains of Homalite 100 material.

The linear contact law was simple to formulate, characterize and run, and it could

provide reasonably accurate values for the wave speed and amplitude attenuation;

however, it produces unreasonably high dispersion (wave profile spreading) than that

found in the experiments. Incorporating a nonlinear stiffness contact law, did provide the

means to reduce this excess dispersion; however, once velocity dependent damping was

added to this model the dispersion again became unacceptably high. Failing to see any

fundamental mechanism for velocity dependent damping for dry cohesionless granular

materials, the final contact model incorporated a hysteretic stiffness law where loading

and unloading contact responses were taken to be different. For this case the velocity

dependent damping was removed and the hysteretic law provided the necessary damping

to control and model the inter-granular wave amplitude behavior. The hysteretic model

* appears to provide the best match with the experimental data for both the wave speed and

amplitude attenuation, and it predicts the proper dispersion characteristics observed in the

I
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experiments.

A tangential contact law originally proposed by Walton et.al. (1991) was included

with the nonlinear hysteretic normal contact law to predicte the wave propagation in two

dimensional granular assemblies. It is found that these contact laws work well and the

average relative errors between experimental data and predicted values were less than

15%.
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Table 2.1 Numerical predictions of the normal contact loads
of the assembly shown in Fig. 2.12

HCP Assembly ( Input on Disk •5)

Contact Exp L Numerical Model with F, Numerical Model without F,

Locaton Normalized F Normalized F Relative Error % Normalized F Relative Error %

5 :13 1.203 1.357 12.8 1.301 8.1

13 21 1.000 1.000 0.0 1.000 0.0

13 : 22 0.470 0.387 17.6 0.359 23.6

12 :13 0.346 0.360 4.0 0.413 19.4

11 12 0.240 0.257 7.1 0.309 28.8

10 11 0.206 0.195 5.4 0.242 17.5

20 :21 0.385 0.265 31.1 0.306 20.5

19 : 20 0.253 0.207 18.2 0.260 2.8

22 : 30 0.403 0.383 5.0 0.341 15.4.

21: 29 0.620 0.740 19.4 0.780 25.8

29 : 38 - 0.176 0.178 1.3 0.209 18.8

30: 39 0.258 0.272 5.4 0.275 6.6

30: 38 0.316 0.370 16.8 0.322 1.9

29 : 37 0.489 0.553 13.1 0.617 26.2

37 : 36 0.172 0.140 18.6 0.183 6.4

37 : 45 0.403 0.417 3.6 0.495 22.8

37 : 46 0.131 0.124 5.4 0.161 22.9

38 : 46 0.281 0.350 24.5 0.303 7.8

38 : 47 0.247 0.199 19.3 0.221 10.5

39 : 47 0.244 0.276 12.9 0270 10.7

46 : 54 0.307 0.327 6.4 0.283 7.8

Average Relative Error % 11.8 14.5
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Table 2.2 Numerical predictions of the normal contact loads
of the assembly shown in Fig. 2.13

n HCP Assembly ( One Void, Input on Disk #35)

Contact Exp [ Numerical Model with F, Numerical Model without F.
Location Normalized F Normalized F Relative Error Normalized FRelativError

35 :36 1.000 1.000 0.0 1,000 0.0

27 : 23 0.126 0.110 12.4 0.082 34.9

28 29 0.268 0.277 3.5 0.207 22.7

29 30 0.190 0.214 12.6 0.162 14.7

3 30 :31 0.140 0.164 17.3 0.131 6.4

20 • 21 0.126 0.174 37.8 0.172 36.5

35 :27 0.436 0.422 3.1 0.425 2.5

27 :19 0.300 0.311 3.7 0.329 9.7

3 19 :11 0.252 0.239 5.1 0.269 6.7

36 • 28 . 0.422 0.424 0.5 0.471 11.6

28 : 20 0.356 0.373 4.7 0.443 24.4

20:12 0.316 0.325 2.7 0.402 27.2

29 : 21 0.147 0.063 57.2 0.055 62.6

Average Relative Error % 12.3 20.0

4
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Table 2.3 Numerical predictions of the normal contact loads
of the assembly shown in Fig. 2.14

HCP Assembly ( 3 Voids, Input on Disk .35)

Contact Exp Numerical Model with F, Numerical Model without F,
Location Normalized F Normalized F Relative Error % Normailzed F Relauve Error %

35 36 1.000 1.000 0.0 1.000 0.0

27 :28 0.103 0.110 7.2 0.082 20.3

28 29 0.268 0.277 3.5 0.207 22.8

29 : 30 0.190 0.213 11.9 0.162 14.7

30 31 0.197 0.180 8.7 0.141 28.4

31" 32 0.155 0.141 9.3 0.119 23.2

20 • 21 0.127 0.174 36.7 0.172 35.4

21: 22 0.134 0.156 16.2 0.150 11.9

23 " 24 0.101 0.132 30.8 T -0.125 23.8

12 13 0.120 0.119 1.0 0.141 17.5

13 14 0.134 0.112 16.5 0.124 7.5

14: 15 0.155 0.108 30.4 0.113 27.1

35 : 27 0.437 0.422 3.3 0.425 2.7

27 :19 0.300 0.311 3.7 0.329 9.7

19 :11 0.254 0.240 5.9 0.269 5.9

36 :28 0.423 0.424 0.2 0.471 11.3

28 : 20 0.359 0.373 3.8 0.443 23.4

20:12 0.310 0.325 4.7 0.402 29.7

29 : 21 0.148 0.063 57.5 0.060 59.5

Average Relative Error % 14.2 19.8
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Table 2.4 Numerical predictions of the normal contact loads

of the assembly shown in Fig. 2.15

Random Assembly ( Input on Disk #1)

Contact Exp Numerical Model with F, Numerical Model without F,
Location Normalized F Normalized F Relative Error 9o Normalized F Relauve Error %

1 :2 1.000 1.000 0.0 1.000 0.0

2: 5 0.762 0.678 11.2 0.668 12.3

5 :10 0.507 0.432 14.8 0.418 17.6

10 :17 0.358 0.358 0.1 0.365 2.0

17 26 0.295 0.261 11.5 0.295 0.0

1 :3 0.832 0.891 7.0 0.888 6.7

3 6 0.565 0.569 0.6 0.541 4.2

6 :12 0.303 0.292 3.8 0.274 9.6

12 : 20 0.218 0.176 19.2 0.201 7.8

20 : 31 0.256 0.135 47.3 0.184 28.1

5 :11 0.303 0.224 26.1 0.371 22.4

11: 19 0.333 0.311 6.5 0.224 32.7

19 : 29 0.351 0.331 5.7 0.359 2.3

6 11 0.251 0.378 50.4 0.379 51.0

11 :18 0.259 0.316 21.9 0.331 27.8

18 :27 0.229 0.264 15.1 0.297 29.7

2 :4 0.620 0.545 12.1 0.583 6.0

4 : 9 0.534 0.448 16.1 0.465 12.9

9 :16 0.331 0.305 7.9 0.323 2.4

9 :17 0.182 0.238 30.7 0.345 89.6

3 : 7 0.500 0.526 5.2 0.570 14.0

7 :13 0.433 Q.426 1.7 0.468 8.1

13 : 21 0.347 0.326 5.9 0.383 10.4

18 : 28 0.140 0.158 12.7 0.198 41.4

Average Relative Error % 13.2 18.3
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(a) Linear normal contact law (b) Nonlinear normal contact law
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(c) Nonlinear-hysteredc normal contact law (d) Tangential contact law

Fig. 2.3 Particle contact laws
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Fig. 2.4 Typical isochromatic fringes obtained from a single chain experiment
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CHAPTER 3

APPLICATION OF STRAIN GAGES TO STUDY CONTACT LOADS
IN GRANULAR PARTICLES

3.1. INTRODUCTION

The study of contact load and wave propagation in granular materials is of

importance in many areas of technology. These include powder metallurgy, earthquake

engineering and soil mechanics etc.. The granular materials, such as sand, rock and clay,

are often modeled as aggregate assemblies of disks or spheres interacting only through

contact mechanisms. Wave propagation and load transfer in such materials are strongly

dependent on their microstructures. An excellent review article by Deresiewicz (1958)

presents both static and dynamic studies prior to 1958. Another more recent review article

by Krizek (1971) presents the dynamic response of cohesionless granular soils.

The concept of modeling granular media as an array of elastic particles (eg.

spheres or disks) lead to the initial attempts at predicting wave propagation through such

media. Early work by lida (1939), Takahashi and Sato (1949), Hughes and Cross (1951),

Hughes and Kelly (1952), Gassmann (1951) and Brandt (1955) employed a normal

granular contact force concept. This initial work investigated the propagation velocity as

a function of confining pressure, particle size and aggregate geometry. It was discovered

however, that the classical theory of contact due to only normal forces, does not in

general accurately model real materials. With this in mind, Duffy and Mindlin (1957),

proposed a theory for granular media which includes both normal and tangential contact

loads. This theory produced a nonlinear and inelastic stress-strain relation. A considerable

amount of work has been done to try to determine the elastic constants of particular

granular assemblies, see for example, Hendron (1963), Petrakis and Dobry (1986,1988)

and Walton (1987).

With regard to experimental work, the method of photoelasticty has been

employed to study the behavior of granular materials. Photoelasticity was first used for

granular media by Drescher and De Josseling De Jong (1972), while later work includes

Derescher (1979) and Durelli and Wu (1983). This work was however only for the static

behavior case. Dynamic analysis of granular media employing photoelasticity was first
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reported by Rossmanith and Shukla (1982) and Shukla and Damania (1987). Later studies

by Shukla et. al. (1988a,1988b) further investigated the use of dynamic photoelasticity

using high speed photography to record wave propagation through various assemblies of

birefringent disks.

In this paper, strain gages were employed to study contact loads, wave propagation

and dynamic load transfer in granular media which was simulated using one and two

dimensional assemblies of circular disks. The strain gages were placed on disks to obtain

the two parameters namely, the half contact length b and friction factor P3 which control

the stress field near the contact point. Using this data the normal and tangential contact

loads were obtained by integrating the contact stresses along the contact length. By

putting the strain gages at different locations in the aggregate assembly of circular disks

the wave velocity and amplitude attenuation were also obtained. The static experiments

were conducted first and the experimental results showed good agreement with similar

results obtained from photoelasticity. Strain gages were then applied to dynamic contact

problem and the results again compared with dynamic photoelasticity.

3.2 THEORETICAL ANALYSIS

The problem of contact of elastic bodies under normal loading was first solved by

Hertz (1881). This problem was further studied by many researchers (Morton and Close,

1922, Thomas and Hoersch, 1930, Coker and Ahmed, 1921). The effect on the stresses

due to the presence of a tangential load, however was not taken into consideration by

investigators until 1939, when Lundberg (1939) developed a general theory of elastic

contact between two semi-infinite bodies. Mindlin (1949) investigated the distribution of

tangential load across the area of contact where one elastic body slides over the other.

Smith and Liu (1953) derived the equations for the stresses 7,,, G•, ay, and Q,• at any

point around the contact point. Shukla and Nigam (1985) used full field photoelastic data

to evaluate the contact stresses and the contact area by utilizing the least square technique

in conjunction with the Ncwton-Raphson method.

Fig.3.1 represents the cross section of a roller of elastic material that rests upon

a flat surface of a solid elastic body. The roller is subjected to a distributed load of W

Newtons per unit length, which presses it against the body over a long narrow area of

contact whose width is 2h. A lateral distributed load off Newtons per unit length is also
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applied to the body. Let P be defined as a friction factor such that f=r3W. f3 will be the

coefficient of friction if motion impends. The distribution of the normal and the tangential

stresses will be assumed to be elliptical (Mindlin, 1949) as shown in Fig. 3.2. Smith and

Liu (1953) gave the equations for the stresses o,,, Q,• and a, for points close to the

contact. These equations are

b (z(bo 1 X0b2) +OZ2  202) (3.1)

2bx . 2 Z 2)bX2

+ zg +2 +2-x ) 2(
bA b

b

-x --b [Z20 +P((b2+2X2+2Z2)X z,1_27, z -3XZ02 (3.3)

where 0, and 02 are defined as

7t (M + N) 7t(M-N)
01 = , 02'

MN/2MN+2x 2+2z=-2b 2  MN /2MN+2x2+2z 2 -2b 2

M = /(,b-x) 2 +z2 , N F(b-x)2 +z2

1 Vl -v 2

A +A E, E 2

2Rý, R 2

Subscripts I and 2 refer to the two bodies making the contact. R I and R2 are radii of

curvature at the point of contact. E is the modules of elasticity and v is the Poisson's
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ratio. The two unknowns in the stress field equations are b and 13. Other parameters

depend on the geometry of the bodies, location coordinates and material properties.

Therefore, two strain gages can be employed to find the two unknowns namely, half

contact length b and friction factor 13.
3.2.1 Frictionless Contact Problem

At some contact points within the assembly of disks, the tangential contact load

is considerably less than the normal contact load (for example, in a single chain assembly

of circular disks). Thus, the friction factor 13 in the Hertz contact stress equations can be

considered to be zero. Then eqs. (3.1), (3.2) and (3.3) become

a - IbX0 2) (3.4)

bz (b2+2z2+2x2 2- 3xn2 (3.5)

bz 24 2  
(3.6)

In the eqs. (3.4),(3.5) & (3.6), there is only one unknown, the half contact length t. From

the stress-strain relation of a plane stress problem we have

E 1I V (3.7)Ez S

In eq. (3.7) F,, is the strain value which can be obtained by using a strain gage located

at any position of x and z.

When two circular discs with the same radius R and the same material are in

contact, on the z axis, that is, x=O, the expressions for 0, 02, A, B and A\ can be

simplified as below:

M N = 2+
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t,1 = -__ _t 02 = 0

z b 2 + z 2

A -2R(1 - v 2)
E

Therefore the stresses a,,, axx and T,, will be further simplified as

aZ, b2-(3.8)

A b2 + z 2

b 2 + 2 z 2  2z
X-- - + - (3.9)

A b 2 +z 2  A

a =0 (3.10)

Substituting eq. (3.8) & (3.9) into eq. (3.7) results in the following expression

I (I -~ v)b2  2v Z2  2vz 1 (.)-+ -- (3.11)
L A 2 ÷2Z2

In eq. (3.11) -,• is the strain value from the strain gage and the half contact length b on

the right side of the equation is the only unknown. Thus, if the strain gage is placed at

x = 0 and some distance z away from the contact point, then the half contact length h can

be determined numerically as follows. Move the right side of eq (3.11) to the left we have

a new function f(b) as below

f(b) = F-,, + I(o - voX) (3.12)

For a given value of strain E,, say, F-, = -3000 microstrain, f(b) will be zero for some

value of b. This b will be the correct half contact length correspondent to the given strain.

To find this b we can plot f(b) as a function of b starting from zero (since half contact

length b cannot be negative), as shown in Fig. 3.3. It can be seen from Fig. 3.3 that b is
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about 0.93 mm for F, = -3000 microstrain.

3.2.2 Contact with Friction

When the tangential contact load is not negligible P3 has to be obtained to

determine the stress field around the contact point. Thus, there are two unknowns b &

and two strain gages have to be used to solve them.

At first, an attempt was made to solve this problem using a two-element

rectangular rosette. This two-element rectangular rosette can be placed at any location of

x & z with an orientation angle 0 (see Fig. 3.1). The stress-strain relations can be

expressed as below:

1~ (ol. - VO'•) (3.13)

-- ' -vo ) (3.14)
E

where (Y,,' and ox' are the transformed stresses (the corresponding coordinates, shown in

Fig. 3. 1) and they can be written as

Y'•,. = a,,sin20 + y cos 20 + 2 T sin0cos0 (3.15)

U'", = 0"cos20 + asin20 - 2a,.sin0cos0 (3.16)

Where ao, o,, and o,• are given in eqs. (3.1),(3.2) & (3.3). By substituting eqs. (3.15)

& (3.16) into eqs. (3.13) & (3.14), one gets

E--- b {(sin0 '-vcos20)[z(b, -x, 2) + 13 z 20 ]
tEA 1X02 t

F/L2~2
+ b'+2z-+2x2 -+(c~ 'O - sinO) b - -'b-- x•

+[(2Zb 3 2) 27t x I( 2_x2_Z2)bX

+20l+v)sin~cosO 02+P÷ b +2x +2 )o- 2. z Z-3xz2b b

(3.17)
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- b {(c 2 0 u vsin2O)[z(b0, 1X0)+ z20,
_ EA

+(sin2O-vcos2)0 b+z-x 2  2 - 3x2

÷1((2x22b2_3Z2)02+ 2ix_ +(b ÷2_b2x2-z2)bx0 1 l
bb

2 2 Z2)-2(1 +v)si~o 0d2+1P (b+2x'+2z-,.-g.z!2,,- -3 XZ02

(3.18)

It can be clearly seen that b & 13 are coupled in the nonlinear system of eqs. (3.17) &

(3.18). The correct solutions of b & 13 are quite dependent on the accuracy of the two

strains Fz' & e.' at the same time. If a two-element rectangular rosette is placed at x=O

the strain values of cE,' & £,x' are not very sensitive to 13. Various other placements of

the rosettes did not yield satisfactory results and therefore, after initial tries the two-

element rectangular rosette was dropped as an option.

Careful observation of eqs. (3.1) and (3.2) shows that when x is zero, the stresses

a, and o., are independent of 13 since 02 will also be zero. Thus, the half contact length

b found from eq (3.11) is independent of P. Therefore, for the friction problem, one of

the two strain gages can still be placed at the location described in the frictionless

problem to find b. Once b is known, P3 will be the only unknown and can be simply

solved using eq. (3.17). In eq. (3.17), E,' is the strain value from the second strain gage

which is placed at the location of coordinates x & z away from the contact with an

orientation angle 0 (refer to Fig. 3.1 & 3.4).

3.3 EXPERIMENTAL PROCEDURE AND RESULTS

The applicability of the theoretical equations developed in the previous section for

the experimental determination of half contact length, b, and friction factor, P3, was next

verified. The experiments involved measurements of strains using strain gages at points

in the vicinity of the contact of two circular disks. The half contact length, b, and friction

factor 13, were then obtained from the measured strains through eqs. (3.11) and (3.17).

The experimentally obtained values of b and 13 using strain gages were compared with the

values obtained through photoelasticity technique developed by Shukla and Nigam (1985).
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The disk material used in the present investigation was a birefringent brittle

polyester material, Homalite-l(X), whose mechanical and optical properties are well

characterized. The elastic constants and the experimental model geometry are shown in

Fig. 3.4. The disk diameter was 65-mm and its thickness was 12.7-rum. The strain gages

used in the experiments were 0.4-mm long and 0.4-mm wide and were manufactured by

Micromeasurement Inc., U.S.A. The location (vertical position, z, horizontal position, x

and orientation angle, 0) of the strain gages were decided after a careful consideration of

the strain field around the contact so that the error in strain measurement is minimized.

3.3.1 Selection of Strain Gage Positions (x & z)

Fig. 3.5 shows the strain e,, as a function of the normal distance z from the

contact for various values of half contact length b. It can be seen that steep gradients in

the strain exist near the contact point. As the distance normal to the contact point

increases the strain gradients reduce and the strain profiles become almost flat after z=4

mm. Thus it is important that the strain gage be placed beyond z=4 mm so as to minimize

the average error due to strain gradient. On the other hand, Hertz contact stress equations

are valid for a distance approximately not more than 8b from the contact point. Typical

half contact length was about 0.6 mm - 1 mm. Thus to meet the above constraints the

strain gage must be placed at a distance between 4 mm to 8 mm from the contact point.

In this investigation z=5 mm was chosen for the first strain gage placement.

In order to find the friction factor P the second strain gage has to be placed at

a position where the strain should be sensitive to the value of the friction factor P3. Fig.

3.6 shows the strain distribution of c, along z=5 mm cross section for various values of

] and b=l mm. It is found that the strain E, becomes sensitive to P3 after x=4 mm. Thus

the location of the second strain gage was chosen to be z = 5-mm and x = 5-mm.

3.3.2 Selection of Strain Gage Orientation (0)

It has been shown previously in eq. (3.11) that the strain e,, from the first strain

gage with orientation angle 0 = 0' is only related to the half contact length b. Thus the

two unknowns b and P in Hertz contact stress equations are uncoupled. To take the

advantage of this the orientation angle 0 for the first strain gage was chosen to be 0 =

00.

The strain c, from the second strain gage is plotted as a function of orientation
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angle in Fig. 3.7. This Fig. shows that the second strain gage should be oriented at 45'

to obtain maximum sensitivity with regard to friction factor [3. For a 0. 1 difference of the

value of friction factor, the variation of strain can be as high as 180 microstrain (b = I

mm). Thus the orientation angle for the second strain gage was chosen to be 0 = 45'.

3.3.3 Effect of Strain Gage Size

Since the strain gage has a finite size it averages the strain over its grid area.

Therefore the measured strain will be different from the value of the center of the gage.

This average error may be defined as (E, - ,v)/IEc where E, is the strain at the center of

the gage grid and Ec, is the average strain over the entire grid area. C,, was obtained by

taking average of strains calculated at 121 points uniformly spread (11 X 11) over the

entire gage grid area. Fig. 3.8 shows the average error for different gage lengths but a

fixed aspect ratio of L/W = 1. The figure shows that if the gage length L is less than .5

mm the average error will be smaller than 1%. Thus the strain gage EA-06-015CK-120

with L = W = 0.4 mm was used in this study.

Thus, all the details about the location and orientation of the strain gages were

finalized and are as follows:

First strain gage Second strain gage

Vertical position, z = 5 mm z = 5 mm

Horizontal position, x = 0 mm x = 5 mm

Gage orientation, 0 = 00 0 = 450

Gage length, L = 0.4 mm L = 0.4 mm

Gage width, W = 0.4 mm W = 0.4 mm

Theses value of different parameters were used for the actual measurements.

3.3.4 Strain Measurements and Determination of Half
Contact Length & Friction Factor

3.3.4.1 Static Loadings

The experimental model shown in Fig. 3.4 was used for the measurement of

strains and for the determinatior of half contact length and friction factor for static

loadings. Two strain gages were mounted near the contact point at the locations and

oricntations given above. The disk (shown in Fig. 3.4) was loaded in the Instron machine.

The strains from the two strain gages were recorded while photoelasticity technique was

61



employed simultaneously for comparison. The half contact length and friction factor were

then determined using eq. (3.11) & (3.17). The values of half contact length and friction

factor obtained from both the strain gages and photoelasticity for different loads are

shown in Fig. 3.9. It was found thmt the values from the strain gages agree very well with

the result from photoelasticity.

3.3.4.2 Dynamic Loadings

Dynamic loading was achieved by detonating a small mount of explosive on top

of the experimental model. Since the wavelength of the loading pulse is much larger than

the disk size there is quasi-static loading around the contact zone during the wave

propagation event (Shukla and Damania, 1987). Thus, the static Hertz contact theory still

can be used for the dynamic case. The dynamic strain recordings shown in Fig. 3.10

were substituted into eq. (3.11) & (3.17) to find the half contact length and friction

factor. Fig. 3.11 shows the half contact length b increase and decrease with the passage

of the wave while the friction factor keeping a constant around 0.25. The experiment with

same geometrical arrangement and loading condition was repeated utilizing dynamic

photoelasticity and high speed photography. Four out of twenty pictures are shown in Fig.

3.12 and the experimental results are plotted in Fig. 3.11.

3.3.5 Application of Strain Gage Method to Wave Propagation in Granular Media

Several strain gages were mounted at different locations in a single chain model

consisting of 100 llomalite-1(X) disks with one inch (25.4 mm) diameter and 1/4 inch

(6.35 mm) thickness as shown in Fig. 3.13. The typical dynamic contact strain profiles

as obtained from strain gages are shown in Fig. 3.14. From these strain profiles the wave

velocity, wave length and wave amplitude attenuation can be found as follows.

3.3.5.1 Wave Velccity

From the recorded strain profile data, wave velocity was calculated using the

equation below

L (3.19)
t

where V is wave velocity, L is the distance between any two strain gages and t is the

travelling time of the wave from strain gage I to strain gage 2. The wave velocity also
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can be found by plotting tile wave front as a function of time frioil all the strain gage data

as shown in Fig. 3.15. The slope in Fig. 3.15 gives the wave velocity which is about 987

m/s for thi,, experiment. This wave velocity is almost same as the one obtained by Shukla

Damania (1987) using dynarnic photoelasticity and high speed photography.

3.3.5.2 Wave lengýth

The wave lei:gth . car be obtained from the equation

k = V T (3.20)

where T is the wave duration which is the width of the strain profile. It was found that

the wave length X is about 100 mm which again compares well with dynamic

photoelasticity results.

3.3.5.3 Wave Amplitude Attenuation

As mentioned before, the dynamic contact load can be obtained from the strain

gage data. This load was obtained and is plotted as a function of propagational distance

in Fig. 3.16. Due to the internal losses within the granule, energy spent in closing the

contact and some frictional and reflection effects, the peak contact load decreases

continuously as the wave propagates through the model. For a normalized propagational

distance of X/D = 50 ( X is the propagational distance and D is the disk diameter), this

load drop is around 50%.

3.4. SUMMARY

A simple experimental procedure is developed to study static and dynamic contact

loadings in granular assemblies. Theoretical equations for the strain field in the vicinity

of the contact point between two disks are critically evaluated to obtain the optimuml

orientation and location of the strain gages to find the half contact length b and friction

factor [3. The comparison of experimental results from strain gage and photoelasticity is

3tiite good for static loading as well as dynamic loading. Application of this strain gage

method to wave propagation in granular media also shows good ag'reement between the

results from strain gage technique and dynamic photoelasticity. 1lhe high speed

photography systems are generally limited to few discrete points and field of view

whereas the strain gage technique has no limit in time and space. Thus. tihe strain g0aCg

technique has a tremendous potential for appl;"ation in the area of wva ye propagation in
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granular media, especially for those cases where the wavelength of the loading pulse is

long and in cases where the granular assembly size is large.
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CHAPTER 4

EFFECTS OF PARTICLE SIZE AND LOADING AMPLITUDE
ON WAVE VELOCITY

Experiments were conducted to study the velocity with which mechanical signals

propagate in a granular media. In particular, the dependence of this velocity on the size

of the granules as well as the wave amplitude was investigated. A numerical study was

also conducted to compare with the experimental results.

4.1 INTRODUCTION

This study primarily deals with the effects of particle size and the amount of

explosive, on the stress wave velocity. Both the strain gage technique and dynamic

photoelasticity were employed to obtain the wave velocity and its wavelength in a one-

dimensional, relatively large-sized granular medium. The granular medium was simulated

with a single chain of circular disks fabricated from Aluminum and Homalite 100,

respectively. Different size disks, with diameters ranging from 6.4 mm to 76.2 mm (refer

Table 4.1) and thickness 6.4 mm, were used in this investigation. The wave velocity

obtained by both methods was found initially to increase with the increase of the disk

diameter and then gradually approached a constant value. The wavelength monotonically

increased with the increase of disk diameter.

4.2 EXPERIMENTAL PROCEDURE

Two groups of experiments were conducted using the strain gage technique and

dynamic photoelasticity. For the strain gage experiments, the circular disks were

fabricated from both Aluminum and llomalite 100 with disk diameters ranging from 6.4

mm to 76.2 mm. For the dynamic photoelasticity experiments, the disks were fabricated

from Homalitc 1(X) with diameters ranging from 6.4 mm to 71.1 mm. These disks were

arranged in a single chain assembly as shown in Fig. 4.1. The assembly was loaded by

exploding a small charge of explosive (LEAD AZIDE). The explosive was contained in

a specially designed charge holder which was placed on top of the assembly. The stress

wave generated by this loading was monitored either by strain gages or dynamic

photoelasticity.
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4.3 EFFECT OF PARTICLE SIZE ON WAVE VELOCITY

In this part of study, the disk diameter varied from 6.4 mm to 76.2 mam. However,

the explosive amount was kept constant ( 10 mg Lead Azide ) for all experiments.

4.3.1 Strain-Gage Technique

Two types of strain gages were used for this investigation. Strain gage CEA-

06032UW-120 was used for larger size disks (25.4 mm diameter or above) and strain

gage MA-06-008CL-120 was used for disks under 25.4 mm diameter. In each experiment

two strain gages were bonded respectively on the center of two different Aluminum disks

as shown in Fig. 4.1. The distance between the two strain gages was kept at 3 disk

diameters in all the experiments. The first strain gage disk was located at least 4 disks

away from the explosive so that the wave form was fully developed before reaching the

gages. The strain gages were connected through an Ectron Model R513-5SG-16 dynamic

amplifier to a Nicolet Digital Oscilloscope. A typical strain profile obtained in one of the

experiments is shown in Fig. 4.2.

From the recorded experimental data, wave velocity was calculated using the

equation below

L
V = (4.1)

t

where V is wave velocity, L is the distance between the two strain gages and t is the

travelling time of the wave from strain gage I to strain gage 2. The wavelength ý. was

then obtained from the equation

X = V T (4.2)

where T is the wave duration (see Fig. 4.2).

The results obtained from the strain gage experiments are shown in Table 4.1.

These results indicate that the wave velocity increased by almost 46% as the diameter was

increased from 6.4 mm to 12.7 mm. Further increase in the disk diameter did not seem

to affect the wave velocity. The variation of wave velocity as a function of disk diameter

is shown in Fig. 4.3. The wavelength of the loading pulse showed a monotonic increase

with the disk diameter as shown in Fig. 4.4, The reason for this is that in larger disks,

reflected waves have to travel longer distances before coming hack to the contact point.
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This keeps the contact loaded for more time and as such produces larger wavelengths. It

is interesting to note that the ratio of wavelenith to disk diameter almost stays constant

when the diameter is varied from 19 mm to 76.2 mm. This, in our opinion, is the reason

why the wave velocity does not show a change for different disk diameters in this range.

4.3.2 Dynamic Photoelasticity

A multiple-spark-gap camera was used for dynamic photoelastic experiments. The

one dimensional disk assembly was put in the optical bench of this camera. The camera

was triggered at some prescribed delay after igniting the explosive and provided 20

photoelastic images at discrete times during the dynamic event. A typical sequence of 8

images for a single chain assembly of Homalite I(X) disks with 25.4 mm diameter is

shown in Fig. 4.5. These discrete images of the wave propagation phenomenon were

enlarged using a Beseler enlarger. The wave front was digitized using the Hicomscan

digitizer interfaced with an IBM personal computer. Thus the wave propagation distance

as a function of time was obtained and a typical plot is shown in Fig. 4.6. The slope of

this plot gave the wave velocity. The wavelength X can be measured directly from the

photographs of the wave propagation process shown in Fig. 4.5.

A series of experiments were conducted using dynamic photoelasticity and the

experimental results are listed in Table 4.2, The wave velocity as a function of disk size

is plotted in Fig. 4.3. It was found from Fig. 4.3 that the wave velocity for 6.4 mm disk

3 is about 570 m/s while the ratio X/D is around 11. When the disk diameter was increased

to 9.5 mm, the wave velocity increased to 950 m/s. With the further increase of disk

diameter, the wave velocity only increased slightly and approached a constant velocity of

about 1 (X) m/s. The wavelength on the other hand monotonically increased with the disk

diameter as shown in Fig. 4.4. Again like the aluminum disk experiments, it is interesting

to note that velocity seems to be controlled by the ratio of X/D in Homalite 1(X) disk

experiments also.

The advantage of using dynamic photoelasticity is that the wave propagation

process can be completely seen in the whole field. The photographs obtained from the

experiments, showed that when the stress wave propagated inside the disk its wave front

normally took the shape of the disk. Even in large size disks (71.1 mam), the body P and

S-waves and the surface Rayleigh wave were not observed (except in the disks very close
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I to the explosion). The wave propagation in a granular medium is governed by contact

mechanisms and the wave velocity is found to be much smaller than the dilatational wave

or shear wave velocity.

4.4 EFFECT OF LOADING AMPLITUDE ON WAVE VELOCITY

A series of experiments were conducted using strain gage technique to study the

effect of loading amplitude on wave velocity. The experimental setup is shown in Fig.

4.7. The disks were made of Homalite 100 with one inch diameter and four CEA-

0632UW-120 strain gage were placed at four different disks as shown in Fig. 4.7. To

obtain different loading amplitude various amount of explosive (Lead Azide) were used

namely, 5, 10, 20, 30, 40, 50, 100 mg respectively.

Typical dynamic strain profiles obtained during the experiments are shown in Fig.

4.8. Since the strain gages were placed near the contact equation (4.4) was used to find

the half contact length b. The contact load P was then calculated using the equation below

3 lgiven by Boresi (1978)

p- h b2  (4.3)

*~ 2A

Table 4.3 and Fig. 4.9 show the time of peak contact load occurring with different

values of loading amplitude. It was found that with the increase of the peak load the

stress wave took less time travelling from the explosion source to strain gage location.

From the strain gage data the wave velocity were computed using a least square method

and are listed in Table 4.4. The wave velocity in Fig. 4.10 shows about 14% increase

from 940 m/s to 1070 m/s as the peak contact load increased from about 1000 to 5000

3 newton. Any attempt to increase peak contact load further by using mere explosive

resulted in the damage of disks and the strain gages.

3 The increase in wave velocity found from the experimental results can be

explained as follows. Firstly, the larger contact load produced larger contact area and this

3 made it easier for the wave to propagate from one particle to another one. Secondly.

Homalite 100 is a strain rate sensitive material and the greater wave amplitude with the

3 same wave duration resulted in a larger effective elastic modulus and correspondingly

higher velocity.
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4.5 NUMERICAL INVESTIGATION OF TIlE EFFECT OF
PARTICLE SIZE ON WAVE MOTION

The distinct element method with a nonlinear-hysteretic contact law was also used

to study the effect of granular size on wave motion. The input loading used was a

triangular time dependent form with a duration of 20jts, and the parameters needed for

calculation are given in Table 4.5 and 4.6. The numerical results of V/D and the wave

speed V are shown in Tables 4.5 and 4.6, and it is observed that the wavelength increases

with the diameter of the disk. When the disk diameter D<25.4 mm, the ratio of

wavelength to disk diameter, X/D, decreases with D: however, it remains almost a

constant after D>25.4mm. The distinct element results are compared with the

experimental data in Fig. 4.11. Reasonably good agreement was found between theory and

experiments for the prediction of the wave speed in single disk chains composed of

different sized disks.

It is interesting to note that the values of a and b do not change with the ratio 3/D,

and thus ?JD does not affect the hysteresis directly, though it will influence n and the

ratio &,. When X/D decreases the value of n that represents the nonlinearity increases,

and a similar behavior is noted for the parameter ox,. With the distinct element method,

the wave motion is determined by the input loading, contact stiffness which is a function

of n and ota, and the mass of disk. Thus it is felt that when the ratio X/D is subject to

change both the particle geometric characteristics and the mass of the particle will have

influence on the wave motion, but when X/ID is a constant the wave motion predictions

will be influenced primarily by the inertia characteristics.

4.6 CONCLUSIONS

The results obtained using the experimental techniques of strain gages and

dynamic photoelasticity, along with the numerical predictions from the distinct element

method show that

(1) The wave velocity in granular medium initially increases with an increase of

disk diameter and then approaches a constant wvlocity with further increases of disk size.

This constant velocity is around 40%-50% of the wave velocity in a solid bar of the same

material. Similar results were obtained by lida (1939) who showed that wave velocity in

granular materials was much lower than the wave velocity in bulk material.

(2) The wavelength increases monotonically with the disk diameter.
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(3) The velocity with which dynamic signals can propagate in granular media is

dependent on the ratio of wavelength to disk diameter ?,ID. For larger ratios of ?/D, there

are more contact points under one wave pulse, resulting in reduced stiffness of the disk

chain. Therefore, as k/D increases the wave velocity drops as shown in Fig. 4.11. Clearly

I as the diameter become, very large, 4D will approach zero and the wave velocity will

reach the body wave velocity.

(4) The wave velocity increases slightly (about 14 %) with the loading amplitude.

(5) The distinct element numerical results matched well the experimental findings

and specific model stiffness variations as a function of V/D were determined.

Table 4.1 Results from Single-Chain Strain Gage Experiments
with Varying Disk Diameter (Aluminum)

Disk Diameter D(mm) Wave Velocity V(m/s) Wave Length ;,(mm) Ik/D

6.4 1410 63 9.9
12.7 2060 74 5.8
19.0 2285 85 4.5
25.4 2275 102 4.0
31.8 2095 126 4.0
38.1 2220 159 4.2
44.8 2050 174 4.0
50.8 1970 203 4.0
57.2 20,40 212 3.7
63.5 2(X)5 263 4.1
76.2 1940 291 3.8

# The wave velocity in a solid Aluminum bar is about 509( rn/s.
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Table 4.2 Results from Single-Chain Photoelasticity Fxperiments
with Varying Disk Diameter (1lomalite 100)

Disk Diameter Dmnn) Wave Velocity V(m/s) Wave Lernth Jdmm) X/D

6.4 570 70 11 .)
9.5 950 67 7.0
12.7 995 8O 6.3
25.4 1070 91 3.6
31.8 1150 96 3.0
38.1* 1240 102 27
50.8* 1350 114 2.3
71.1 1130 227 3.2

* Results from reference 181 (different tv,e of explosive used).

# The wave velocity in a solid Flomalite 100 bar is about 2100 m/s.

Table 4.3 Distance from explosion v-.*-, arrival time

Input peak load time of peak contact load
P (Newton) d=132 mm d=157.4 mm d=182.8 mm d=208.2 mm
960 t=165 pIs t=191 Ps t=221 s t=245 pis
1870 t=153 pts t=178 ps t=200 jis t=233 [Is
2500 t=l0 Pts t=175 ýts t=200 pts t=225 [Is

3840 t=139[Is t=164 jas t=188 ýts t=-213 Pis
4430 t=140 Its t=163 [ts t=-'88 PIs t=213 PIs
4900 t=140pts t=164 [is t=188 pIs t=211 Its
5440 t=138 [ts t=162 [is t=16 [Is t=209 ps

* P is the peak contact load obtained from strain gage 1.
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Table 4.4 Wave velocity due to various loading amplitude

Input peak load Wave velocity
P (Newton) V1 V,
960 939 m/s 800 1,-,s
1870 947 rn/s 863 m/s
2500 1004 nms 874 m/s
3840 1032 m/s 950 m/s
4430 1040 m/s 943 m/s
4900 1072 m/s 943 rn/s
5440 1072 nVs 957 m/s

* V, obtained from four strain gages.

V2 obtained by dividing the distance of the first strain gage to explosive by the
arrival time of peak contact load.

** P is the peak contact load obtained from strain gage 1.

Table 4.5 Parameters used for Homalite- 100 and numerical results

D(mm) "1. n a b ý,JD v(n/s)

6.35 2.8x 10" 1.03 0.5 0.05 7.5 577

9.525 1.5x 1()7 1.1 0.5 0.05 6.0 953

12.7 3x10" 1.15 0.5 0.05 5.4 1016

25.4 6x 10" 1.4 0.5 0.05 3.6 1080

31.8 7 x 10' 1.4 0.5 0.05 3.0 1100

71.12 1 x 10' 1.4 0.5 0.05 3.,f) 1129

Table 4.6 Parameters used for Aluminum disks and numerical results

D(mm) W n a b )./D v(rnls)

6.35 4x 1 (0 1.03 0.6 0.02 7.1 1420

12.7 6x 10' 1.2 0.6 0.02 4.7 2020

19 5.5,- 10 ( 1.35 0.6 0.02 4.0 2260

25.4 1 x 10 1  1.4 0.6 0.02 3.8 2180

44.8 1xI10l 1.4 0.6 (.0? 3.9 2036

50.8 l x 10'" 1.4 0.6 0.02 3.8 1992

76.2 1.lXlO r) 1.4 0.6 0.02 3.8 1917
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Fig. 4.1 Strain gage experimental setup for a single chain of Aluminum disks
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Fig. 4.2 Variation of strain with time at two different aluminum discs (disc
diameter D=76.2 mm)

79



3000.

2500.
V V

~-2000.

"5 1500.
I) U

>• 1000. -

500. -- Strain Gage Data (Aluminum Discs)

* Phooelasluicity Data (Homalite 100 Discs)

0 .- 1 "l i' I I I T I I I

o. 10. 20. 30. 40. 50. 60. 70. 80.

Diameter, D (mm)

Fig. 4.3 Wave velocity V as a function of disc diameter D
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Fig. 4.4 Wave length X as a function of disc diameter D
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Fig. 4.5 Isochromatic fringes obtained in a single chain experiment of
Homalite 100 discs
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Fig. 4.6 Wavefront position as a function of time for a single chain experiment
of Homalite 100 discs (disc diameter D=25.4 mm)
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Fig. 4.7 Strain gage experimental setup for a single chain Homalite 100 discs
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CHAPTER 5

INFLUENCE OF LOADING PULSE DURATION ON DYNAMIC LOAD
TRANSFER IN A SIMULATED GRANULAR MEDIUM

An experimental and numerical investigation was conducted to study the dynamic

response of granular media when subjected to impact loadings with different wave

lengths. The granular media was simulated by an assembly of circular disks arranged in

a long straight single chain. The dynamic loading was produced by impacting a projectile

from a gas gun onto one end of the granular assembly. It was found from the experiments

that an input wave with a short period (about 90 pts) will propagate in this granular media

with a steady amplitude attenuation. However, the long wave (period about 650 pts to 900

gs;) will propagate through this granular media with first an increase of amplitude (up to

40% higher than the input) which is then followed by a decrease of amplitude. In

addition, oscillation behavior was found within the main wave pulse indicating significant

dispersion of the input signal. Thus there exists a fundamental change in the local

propagational behavior of waves in granular media for waves with different wave length.

5.1 INTRODUCTION

The study of wave propagation in granular materials is important to many

branches of science and engineering including geomechanics and powder metallurgy.

Dynamic loads may occur due to earthquake motion, underground explosions, and

construction operations. The ability to predict the behavior of structures and foundations

necessitaies the understanding of wave motion in granular media such as sand, rock, and

clay. In addition, granular powders are of great importance to the forming of many solid

materials which are frequently sintered by either static or dynamic compression of

powders. Such sintering processes are associated with load transfer and flow of granules.

Granular materials, having spatial discontinuities in their mass density, are modeled here

as an array of elastic particles interacting only through contact mechanics, and wave

propagation in them is strongly dependent on their microstucttLres. A sizeable amount of

work has been done to study wave propagation in granular materials from a

microstructural standpoint. Some of the earliest work is due to Ida (1939) who used a

simple lumped mass-spring system. Contemporary work has proposed new modeling
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I
approaches such as the fabric tensor theory (Nemat-Nasser and Mehrabadi, 1983), the

distributed body theory (Goodman and Cowin 1972), and the distinct element method

I (Cundall, et.al., 1979) in order to predict the behavior of granular media.

Experimental techniqtes, such as the method of photoelasticity, have been

employed to study the dynamic response of granular materials under explosive loading

(Rosmanith and Shukla, 1982, and Shukla and Damania, 1987). Later studies by Shukla

et.al.(1988b) using high speed photography further investigated the effects of defects,

granular size, and branch angle on wave propagation caused by explosive loading in

granular materials. Combining experimental techniques with numerical interpolation ana

the superposition principle, Zhu et.al (1989) used an experimental-numerical. hybrid

technique to predict the contact forces between granuies in various assemblies.

The distinct element method is a computational scheme, which uses Newtonian

rigid-body dynamics on each particle to simulate the wave motion in granular media. The

intergranule contact mechanics are represented by assuming the granules to have a

particular stiffness and damping. In this way an explicit numerical scheme is developed,

and the wave motion in a large aggregate assemblies of granules can be simulated. This

method has been applied by various authors (Sadd, et.al., 1989b, 1991 and Trent, 1989).

Using experimental techniques and the distinct element method, the effects of

wavelength (or equivalently loading period) on the wave propagation in granular media

are discussed in this paper. In the experiments, the model assembly consisted of a long

straight single chain of circular discs. The simple one-dimensional assembly was chosen

in order to eliminate the effect of variable direction load paths on the current wave length

study. The impact loadings were produced with a projectile from a gas gun, as shown in

Fig.5.l. High speed strain gage instrumentation was used to record the dynamic strain

profiles caused by impact loadings. Hertz contact theory was used to con-ert the strain

profiles into contact load profiles. In the computational study, the distinct element method

was used to investigate the wave motion in the same assembly used in the experiments.

Based on previous work, a nonlinear hysteretic contact law is used in the modeling.

Results obtained from both experiment and computation indicate that the granular media

acts like a nonlinear wave guide, propagating mechanical signals with significant

dispersive characteristics. In one dimensional granular media, the dispersive phenomenon
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depends on the relation of the wavelength to the particle size. For long wavelengths, wave

propagational behavior shows significant differences from 'hat for short wavelengths.

5.2 EXPERIMENTAL PROCEDURE AND RESULTS

The experimental method used in this study utilized electrical resistance strain

gages to record the dynamic strain profiles as the stress wave passes through the granules.

The experimental arrangement is shown in Fig. 5.1. The one dimensional granular media

consists of 100 circular disks fabricated from Homalite 100 with 25.4 mm diameter and

6.35 mm thickness. The strain gages were bonded on the disks about 5 mm away from

the contact point. Around the contact point Hertz contact equations are valid (Shukla,

1987). Since there is negligible friction, tlVe stress field equations can be expressed as

below

z(b 1-X0 2 ) , a,~ bz* ' 2 (5.1)

b b

where 0,1 02 and [ are defined as

7T(M+Q) n(M-Q)

MQv2MQ+2x 2 +2z 2-2b 2  MQ 2MQ+2x 2 +2z 2-2b 2

= R(-v 2 ) M = r(bix)2 .z 2 , Q - (b-x)2 +z2
E

where R is the radius of the disk, v is Poisson's ratio, and E is the elastic modulus. For

a plane stress problem, we have

S = 1(o _vo) (5.3)

If the strain gage is placed along the z-axis, that is, x = 0, the expressions for 0, 02 and

can be simplified and finally Eq.(5.3) can be written as
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C: --- -2vz (5.4)
- 2R( 1 -v2) v-b•v2 +jZ 2

In Eq.(5.4) e, is the strain value from the strain gage and the half contact length b on the

right side of the equation is the only unknown. Thus, if the strain gage is placed at x =

0 and some known distance z away from the contact point, then the half contact length

b can be obtained numerically. Once b is found the stress field can be determined and

then the contact load can be obtained by numerically integrating the contact stresses along

the contact length. In this study the strain gages were bonded on the disks 'N mm away

from the contact points.

Short input loading

A series of experiments were conducted using the gas gun by placing an aluminum

cap in front of the aluminum bar as shown in Fig. 5.1. The first strain gage was bonded

on the first disk and the other three strain gages were put at various positions. Fig.5.2

shows the strain gage output due to impact loading from one of the experiments. The

wave velocity was found to be around 987 m/s. The input loaditig pulse at disk I (shown

in Fig. 5.2) has a duration of about 90 Its. It was found that the wave amplitude (peak

inter-granular contact force) decreased steadily with propagational distance (see Fig.5.6).

The wave shape remains similar with propagational distance indicating small geometrical

dispersion. These results are very similar to those found by Shukla and Damania (1987)

with explosive loadings.

Lt ng input loa"ing

To obtain a longer wavelength, a rubber type material PSM4 with 6.4 mm

thickness was directly placed before the Homalite 100 disk chain before the impact from

the gun. The duration of input loading was about 650 ps as shown in Fig. 5.3 (strain gage

output at disk 1). The wave velocity was found to be around 950 m/s. Different from the

short duration impact loadings, the wave amplitude was found to first increase and then

decrease as shown in Fig. 5.6. In addition, the individual granules (disks) contribute to

a ringing behavior, producing oscillations within the main wave pulse (see Fig. 5.3). By

carefully observing the time interval between the oscillation peaks in given pulse it was

found that this time interval increases with propagational distance. The first three time
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intervals between peaks in one pulse were averaged and plotted in Fig. 5.4. It can be

clearly seen from Fig. 5.4 that the time interval increases from 63 pIs at disk 7 to 102 IPs

at disk 100. From tnis tendency of time interval increase it was found that this long

period input wave tries tc separate into many short waves with a time duration of around

AG0 pLs. After the wave separation the amplitude then seems to decrease steadily. The

phenomenon of increase in wave amplitude for this long duration loading can be

explained by the tendency of the input wave separation. During the process of the wave

separation, the leading portion of the wave gathers more energy which results in the

increase of amplitude. The separated short waves seem to have a specific wave length

which gives the ratio of wave length to disk diameter of about 4. This specific ratio was

,,so found by Xu and Shukla (1990) for disks of 25 mm diameter or larger. These results

imply for this material that there exists a specific ratio of wave length to disk diameter

for which the wave propagation in the single chain is stable.

Additional experiments were conducted with long period impact loadings. Fig. 5.5

shows the typical strain gage output for 200 pis input wave duration. Wave separation

phenomelqon similar to that shown in Fig. 5.3 were also found in these experiments. For

this case the wave amplitude remains almost constant for the entire propagational

distance. The peak contact loads as a function of propagational distance are plotted in Fig.

5.6. From Fig. 5.6, the transition behavior of wave amplitude with the increase of wave

length can be clearly seen. With the increase of input wave length to 900 Pts, the

maximum wave amplitude increases up to about 1.5 times the input wave amplitude. This

amplitude transition phenomenon can be explained by the fact that the longer duration

waves carry more energy than shorter duration waves. Thus, when the main wave

separates to many short waves the leading short wave can have shorter duration and

higher wave amplitude.

5.3 NUMERICAL RESULTS

The distinct element method was used to theoretically investigate the effects of

wavelengtl on the wave propa otien in the one-dimensional granular assembly used in

the experiments. This numerical me.hod models the behavior of granular assemblies

through Newtonian rigid-body mechanics. The interaction between granules is determined

by a particular interaction or contact law and a damping relation. Th(' interaction forces

89



are related to relative displacements and velocities of the granules in contact, and the

granules (disks) are allowed to overlap each other to represent contact deformation. In

addition, the distinct element technique discretizes the time period during which the wave

propagates into a series of time intervals. Each interval is chosen so small that during a

single time step disturbances can not propagate from any disk further than its immediate

neighbors, thus the granule accelerations and velocities can be considered as constants

during a given step. Using a simple forward difference formula the increments of relative

normal and tangential displacements can be written as

A6n = vnAt = I(vi - v%))-nlAt
(5.5)

A8, = vtAt = [(v, - v 2)*t - ((o, RI + o02R,)]At

where vi. (j0, and R, are the velocity, angular velocity, and radius of disk 1, with like

notation for disk 2. The terms n and t designate normal and tangential contact unit vectors

respectively, and they are shown in Fig.5.7 for disk 1. 6,, and v, denote the relative

normal displacement and velocity between adjacent disks in contact whereas 8, and v, are

the relative tangential values. The interaction law between adjacent disks can be written

as

Fn = Fn(6{ ,vn), F, = F,(6i.v,.6n.V) (5.6)

where F, is the normal contact force, and F, the tangential contact force. Using Newton's

law, the acceleration for each particle is determined by the relation

a = F / m. (5.7)

Once the acceleration is known, the velocity' follows bv using the simple difference

equation

v = aAt (5.8)
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Equation (5.5) may be used to determine the disk displacements, and then new contact

forces may be determined for the next time step using relations (5.6). In this way, the

distinct element method develops an explicit numerical scheme which can be used to

study the dynamic behavior of large assemblies of granules.

Previous studies have considered various forms for the contact law (Sadd et.al,
1991, 1992b). A nonlircar-hysteretic contact law was found to be more appropriate than

other attempted laws in that using this law the predicted wave amplitude, wave shape, and

wave velocity agreed best with experimental results. Therefore a nonlinear-hysteretic

contact law is adopted in this work, and is expressed as

F L= SP ............................... loading
m .u U R ............................. unloading, reunloading (5.9)

F,,L = lFL + (1-Tl)F,,u .......... reloading

and is shown in Fig. 5.8. Here loading indicates that the force reaches its maximum value
in its history and is still increasing, and reloading is defined as the state in which the load

is increasing but its value is smaller than its maximum value. The value of q is

determined by

q =(A R)max)2 (5.10)

where 5(i),,a, is defined as the value of 6n at centact point i when the normal contact

force at the point has attained its maximum value and A is a constant to be determined

The value of Tj is given by

W n min (5.11)

n max n min

with 8',, is the current value of relative normal displacement at contact point i, and

68'),n,,,,, indicates its minimum valuc in the previous unloading or reunloading path. At the

moment reloading begins, 8i), = 8'&io min and Tj = 0. The value of rl increases with 8(i)n, and

it reaches maximum value of I when 5('n = which indicates that new loading will

begin.

The value of oXL and A are related to material and geometric properties of the disks
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and period of input loading, and p is a parameter of the disk geometry. The parameter O(X,

however, is determined in order to make the unloading path initiate at the peak point of

loading as shown in Fig. 5.8. The chosen numerical values of (XL, A, and p are given in

Figs.5.9, 5.10, and 5.11. The experimental impact input loading was digitized as the input

loading for numerical simulation.

The numerical results from the numerical model are shown in Figs. 5.4, 5.9, 5. 10,

5.11, and 5.12. Fig. 5.9 shows the contact load histories at three different points for a

short period loading (90 Its). The wave amplitude decreased monotonically with the

distance that wave propagated. The wave dispersion is small which matches with the

experimental results shown in Fig 5.2. The dynamic responses of the granular assembly

to long period loadings show significant differences from the results in Fig 5.9. In Fig.

5.10 three contact load profiles at different contact points are given for the case of a 650

pts input. Like the experimental results, within a wave profile a ringing phenomenon is

observed, and wave separation can be observed in the 2nd and 3rd wave profiles. The

amplitudes of the ringing oscillations decrease with propagational distance whereas the

time intervals of the oscillations increase. The average values of the first three time

intervals of each wave profile are compared with experimental results in Fig. 5.4. Similar

ringing behavior can also be observed for the cases with 200 pts (see Fig. 5.11) and 900

pts period input loadings. The normalized peak contact loads of the 90, 200, 650, and 900

pts input are presented in Fig. 5.12. From this figure it is found that, in contrast to the

short input loading case ( 90iis ), the peak contact loads here are not always smaller than

the value of the input loading. Instead of decreasing monotonically the peak contact loads

first increase with propagational distance, and then they begin to decrease steadily. For

650 pts input case the maximum contact load is about 1.56 times of the maximum input

loading.

5.4 DISCUSSION

It is apparent from our studies that for wave inputs with periods greater than

approximately 200 pts, the original smooth input signal will suffer severe dispersion as

it propagates along the granular chain. In essence, the chain acts as a nonlinear wave

guide, and thus the input signal will undergo significant changes in shape. The increase

in amplitude and the resultant ringing behavior shown in Figs. 5.3, 5.5, 5.A0, and 5.11
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indicate that the wave energy is being rearranged within the profile due to the

microstructure of the chain. In order to attempt to analyze this phenomenon, we consider

the behavior of the N-disk system from the viewpoint of a standard modal analysis. In the

following discussion the subscript n has been dropped for conciseness.

Using 6,,1 to denote the deformation between the i-th and (i+I)-th disks, R the
radius of the disks, and u, and u,÷1 the absolute displacements of the i-th and (i+l)-th

disks, then 8j.j+t = 2R - (u, .- u). For a system of N disks in contact, according to

Newton's law, we have

= F, - 2F, + F (5.12)

where m is the disk mass, and F,.,÷• the contact force between disks i and (i+I) which

equals K6j.,+1 . The stiffness K follows from Eq. (5.9) to be

K = 1.4or" 4FO411 4  (5.13)

Eq. (5.12) can be linearized as

6 XKo( 6_,,26 . +6 (5.14)

by using Ko = 1.4a.. 4 FO4 a4aage, where Fawrag, is a constant, and represents the average

value of F. For N disks in contact, we thus have the system

A + .AA (5.15)

where A = (812, 82.3, 834.&.. \', and A is a tridiagonal matrix given by

2 -1

-1 2 -1

-1 2 -1

-1 2
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The associated eigenvalue problem of relation (5.15) reads as

(A- I) X =0 (5.16)

There are N-1 eigenvalues of Eq.(5.16), which give the contact resonance frequencies (0,

(i = 1, ..., N-1), where

CO~2 = ?XiK,/m (5.17)

The normal mode Xi related to 0) is the solution of Eq.(5.16) with k = ki. The response

of the system will be the superposition of the N-1 modes:

N-1A A - XI

A=1

Initially when the wave propagates along the chain, at the beginning, there are

only two disks in contact, and thus there is only one natural frequency 0 2 -= 2 K/m. At

later times the number of the disks in contact increases until it reaches a certain number

(about 28 for 650 Its input loading). Thus all the eigenvalues for the system from N = I
to N = 28 were calculated. After a careful check, it was determined that all systems with

even numbers of disks in contact have the eigenvalue, k = 2. No other eigenvalue has

such a property. In Fig. 5.13 the normal modes corresponding to ?, = 2 are presented for

systems with an even number (2k) disks in contact. In the figure dots stand for the

amplitude of deformation between disks. The dot above the centerline means that two

disks approach each other (deformation increases), and therefore the contact load is large.

The dot below the line represents that two disks tend to separate (deformation decreases),

and contact load is small. It is clear from Fig. 5.13 that the mode for k = 2 is a part of

the mode for k = 3, and the mode for k = 3 is a part of the mode for k = 4 and so on.

Hence once the mode related to k = 2 is stimulated when N = 2k, it will be retained when

N = 2(k+l), and with k increasing this mode will gradually predominate over the other

modes. So the approximate resonant frequency of the system will be (02 = 2 Ko/m.

Consider now the period of the resonance, t. With (x = 1.7X 108 N/mi' 4 and Fav,,,g,

= 1000 N, k = 2 gives r = 100.0 ts. If Fvtge = 500 N, then t = 107.8 ýts. These values
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I are close to the experimental results. The mode for k = 3 is a complete repeatable

structure for the higher modes shown in Fig. 5.13, and it was found out that the distance

between the two points with large contact load is four disks. Therefore when the

resonances of the system corresponds to X = 2, the wavelength will be of four disk

diameters, which also agrees with experimental results.
It should be point out that the previous analysis has been carried out after the

linearization of Eq.(5.12). The actual system, however, has nonlinear hard springs.

According to nonlinear vibration theory, higher amplitudes are associated with higher

resonance frequencies, which can be observed in Figs. 5.3 and 5.10.

5.5 CONCLUSION

Experimental and numerical results indicate that the granular media acts as a

nonlinear wave guide, propagating mechanical signals with significant dispersive

characteristics. For one-dimensional granular chains, the dispersive behavior depends on

I the relationship of the wave length to the particle size and material. For very short

duration input loadings (90 [ts), the wave amplitude decreases steadily with propagational
distance. However, for longer duration loading, the amplitude is found to first increase

and then decrease. Moreover, for loading durations of several hundred microseconds or

more, individual granules (disks) contribute to a ringing behavior, producing oscillations
within the main wave pulse. This oscillation was ound to persist, thus separating ther single input wave into many waves with shorter durations. Hence there exists a
fundamental change in the local propagational behavior of waves in granular media for

I waves of varying wavelength. The ringing is found to be associated with the contact
resonance. It should be noted that the observed dispersion behavior is also a "t nction of

the particle size (disk diameter).

i
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CHAPTER 6

ROLE OF PARTICLE SHAPE AND CONTACT PROFILE ON TIlE
DYNAMIC RESPONSE OF PARTICULATE MATERIALS

Experimental and numerical studies have been conducted to investigate the effect

of particle shape and particle surface roughness on inter-granular load transfer, velocity

and wavelength of a stress wave transmitted through granular media subjected to

explosive loading. Dynamic photoelasticity was used as the experimental technique to

study stress wave propagation through granular media simulated by assemblies of

elliptical and circular particles with varying surface roughness. Numerical studies

employed a computational scheme based upon the distinct element method. Results

indicate that the shape of the particle affects both the velocity of the transmitted stress

wave pulse and the load transfer characteristics. The wavelength shows no appreciable

dependency on the particle shape. Particle surface roughness seems to affect the load

transfer characteristics and the wave length, and to a limited extent, the wave velocity.

6.1 INTRODUCTION

This experimental and numerical study attempts to investigate the influence of particle

shape and particle surface roughness on the dynamic response of granular materials. Using

granular media simulated by circular disks with smooth surfaces (Rossmanith and Shukla,

1982, Shukla and Nigam, 1985, Shukla and Rossmanith, 1986, Shukla and Damania,

1987, Sadd, et.al., 1989a, XU and Shukla, 1990), experimental and numerical techniques

have been previously used to study the load-transfer, wave velocity and wave dispersion

characteristics for various loading parameters and packing geometries, However,

modelling a granular media using such particles has the following limitations:

(0). Particles in actual granular media are not necessarily circular.

(2). In general a granular medium can have more or less number of contacts per

particle than those for circular disks.

(3). For non-circular particles the contact normal vectors may not pass through the

centers of the particles in contact.

(4). Real life particles may or may not have smooth contact surfaces.
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In this study, particle shape was controlled by using elliptical particles of different shapes

and sizes. The ellipse was chosen since it provides a simple scheme to introduce particles

with an oblong shape, and a circular particle can be treated as a special case of an ellipse

with an aspect ratio of one. For surface roughness studies circular disks with varying

surface roughnesses were used to simulate the granular media.

6.2 EXPERIMENTAL PROCEDURE AND ANALYSIS

The experimental setup comprised of various assemblies of Homalite-100 particles

which were loaded by exploding a small amount (10-15 mg) of Lead Azide in a specially

designed charge holder. Figure 6.1 shows one such single chain setup used for simulating

one dimensional granular media using elliptical particles. A Cranz-Schardin multiple

spark-gap camera was used to capture 20 separate photoelastic images of the dynamic

process, at predetermined timings. A typical sequence of 5 photographs for one of the

single chain setups is shown in figure 6.2. These images capture the wave propagation

process at discrete time frames and can be used to provide data for determining contact

loads, wavelength and velocity for the transmitted stress wave pulse. Dynamic

photoelasticity was chosen as the experimental technique as it provides full field

information and enables one to see the shape of the stress wave front, as it propagates

down the granular assembly.

The elliptical particles were routed out of Homalite 100, a photoelastic material.

The template used for routing was machined out of aluminum using a CNC milling

machine. The routing was carefully monitored so as to avoid producing any heat related

residual stresses in the material.

To separate the effect of particle shape and particle size the single chain

experiments were designed so that the number of contacts per unit length remained

constant while the aspect ratio was being varied. Thus, while varying the aspect ratio of

the elliptical particles within a set of comparative experiments, the axis length along the

direction of wave propagation was kept constant and the other axis length was varied. See

figure 6.3 for a definition of the particle width, length and aspect ratio.

Rough particles were fabricated from 1" (25.4 mm) diameter Homalite- 100 disks

by roughing the surface with a band saw. The disks were later heat treated to remove any

residual stresses. Root mean square value of the edge variation of the disk from a mean
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value was taken as a measure of the surface roughness (Joh,,son, 1985'. Moreover, the

thickness being small, this value of roughness was assumed to be uniform across the

thickness. Replication of the same roughness on several disks was achieved by usirg the

same band saw blade.

The photoelastic images were enlarged using a Besseler enlarger and data was

collected with a Hicomscan digitizer linked to an IBM PC-AT. Contact load calculation

at a particular contact and time was done by assuming a local Hertz contact stress field

and applying the multi-point, non-linear least square method developed by Shukla and

Nigam (1985). Data of the wave propagation distance as a function of time was used to

obtain the stress wave velocity. The average velocity was calculated using a linear least-

square fit through the experimental data points. The wavelength X of the stress wave pulse

can be measured directly from the photographs of the wave propagation process as shown

in figure 6.2. It can also be calculated using the duration of contact at any given contact

point and the average velocity of the stress wave.

6.3 NUMERICAL MODELLING

The distinct element method was used to model stress wave propagation in

granular materials. This method, originally proposed by Cundall and Strack (1979) for the

static case, has been applied to dynamic load transfer processes in granular materials by

various authors (Sadd, et.al., 1989, Walton, et.al., 1991, Trent, 1989). The distinct

element method uses Newtonian rigid-body mechanics to determine the motion of each

particle in the granular medium. The interaction between particles is governed by a

particular interaction or contact law, and this law plays a dominant role in overall material

behavior. The interaction forces are related to relative displacements and velocities of the

particles in contact, and the particles are allowed to overlap with each other to represent

contact deformation. Also, the time period is discretized into a series of time intervals.

The velocity and displacement of each particle can be obtained from its acceleration using

a finite difference scheme. The time step is chosen to be small enough so that in a single

time step disturbances cannot propagate any further than the immediate neighbors of the

particle in question. Thus the particle accelerations, velocities, and displacements can be

determined explicitly during a given time step. Referring to figure 6.4, using a simple

forward difference formula the increments of relative normal and tangential displacements
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can be written in terms of velocities as

A8,, = vnAt = I(vi + (o1 x R, - v, - (o, x R,).n]At
(6.1)

A81 = vAt = [(v, - v, + Co0 x R, - x R2)-tAt

where v,, o), and R, are the velocity, angular velocity, and the distance between the mass

center and the contact point of particle 1, with like notation for particle 2. The vectors n

and t designate normal and tangential contact unit vectors, 8,, and v,, denote the relative

normal displacement and velocity between the adjacent particles, and 8, and v, are the

relative tangential values.

Generally the interaction contact law between adjacent particles can be written as

Fn = F,(8n,vn), Ft = F1(61,vt,8n,vn) (6.2)

where Fn and F1 are the normal and tangential contact forces. Using Newton's law, the

acceleration a and the angular acceleration cc for each particle are determined by the

relation

a = F / m, cz = M / I (6.3)

where F and M are the resultant force and moment on the particle, rn is the mass of the

particle, and I is the moment of inertia of the particle. Once the accelerations are known,

the velocities follow by using the simple difference equation

Av = aAt AO = (xAt (6.4)

Equation (6. 1) may be used to determine the particle displacements, and then new contact

forces may be determined for the next time step using equation (6.2). In this way, the

distinct element method develops an explicit time-stepping numerical scheme which can

be used to study the dynamic behavior of large assemblies of particles. Figure 6.5

illustrates a typical computer flowchart of the distinct element numerical routines.

It is obvious that the wave propagation is directly related to the process of load

transfer between particles. Thus the contact law which governs the load transfer is
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important, and studies of various contact laws have been conducted (Sadd, et.al., 1992).

These studies have shown that a nonlinear-hysteretic contact law as shown in figure 6.6

provided the best comparisons with experimental data for granular materials simulated by

assemblies of circular disks. Therefore this contact law is used here, and it is expressed

as

F ,,L = O L 8 P, .................................. loading
F,, .... = x 8, q unloading, reunloading

F nL = OF L + (I-P)F,,u ......... reloading

If in the loading path the maximum value of the force is recorded as Fn mdx' then reloading

is defined as the state in which the load is increasing but its value is smaller than Fn.max"

The reloading path will join the loading path at F, max, and additional loading follows the

original loading path. The value of q is determined by the relation

q --(A max-2 (6.6)

where A is a constant to be determined and 8&)n max is defined as the value of 6,, at contact

point i when the normal contact force at the point has attained its maximum value. The

value of 13 is given by

5() W
n n mm (6.7)

8 max vn rain

where 5(')n is the current value of the relative normal displacement at contact point i, and

8im). m, indicates its minimum value in the previous unloading or reunloading path. At the

moment reloading begins, 8O',, = 8(,'m) and 13 = 0. The value of 13 increases with 8('),, and

reaches a maximum value of I when &(i)n = 8")n m, which indicates that new loading will

begin. The values of ox,, p, and A are related to material and geometric properties of the

disks, and are determined from experimental calibration tests. The parameter (Xt:,

however, is selected to make the unloading path initiate at the peak point of loading, see

figure 6.6.

The distinct element method with the nonlinear-hysteretic contact law has been
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used to simulate the wave propagation along a single straight chain of elliptical particles.

A triangular time dependent impulse with I(XX) N maximum load and 60 Its period was

used to simulate the explosive loadings used in experiments. The time step was chosen

as 2 pts, and the parameters used for various cases are given in Table 6. 1.

6.4 RESULTS AND DISCUSSION

6.4.1 Effect of Particle Shape.

Four different single chain setups were used, with contacts at 25.4 mm intervals.

For the four chains the width of the elliptical particles was increased from 12.7 mm to

38.1 mm while the length was kept constant at 25.4 mam. Thus, single chain granular

assemblies were constructed with varying particle shapes but a constant contact interval.

Figure 6.7 shows the plot of distance propagated by the wavefront as a function of time

for the single chain of 12.5 x 25.4 mm ellipses. The average velocity obtained from the

slope of this plot is also shown. Average wave velocities obtained from the four different

single chain setups are listed in Table 6.2. As the particle width was decreased from 38.1

mm to 12.7 mm the wave velocity was seen to increase from 950 m/s to 1250 m/s. The

wave speeds predicted by the distinct element method are listed in Table 6.1, and the

numerical values agreed with experimental data to within 5%.

Increasing the particle width increases the radius of curvature at the contact point

which influences the contact stiffness. If the radius of curvature at the contact point is

increased while keeping the contact interval constant the contact stiffness increases, which

would imply a higher wave velocity. The increase in contact stiffness as the particle width

is increased was also reflected by the increase in the ox, parameter, as given in Table 6.1.

However, as the width of the particle increases, the particle mass per unit length also

increases and this tends to reduce the wave speed. An approximate equation for the speed

of a stress wave propagating in one dimensional granular media is given by Takahashi

and Sato (1949).

V= d K (6.8)
m

where d is the distance between the centers of two particles in contact, K is the contact

stiffness, and m is the mass of the particle. For the cases studied, the distance (I was kept
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constant at 25.4 mm, and the mass was given as,

in = itpabh (6.9)

where a and h are the half major and minor axes of the elliptical particle, h is the

thickness, and p is the density. From the nonlinear contact law, neglecting damping, the

stiffness can be expressed as a function of the contact force F and the parameter o•,

K = 1.4, 1
11 4Fr 4114  (6.10)

The stiffness reaches its maximum value of Kna, when the contact force is maximum at

F.,,,. Assuming a linear variation of force F with time, and the same peak contact force

Fmax at every contact point, the average stiffness of each contact point is given as,

Ko = 0.5x.Ll'4Fmaxo04/1. 4  (6.11)

The ratios of Ko/m for the different particles are listed in Table 6.1. The peak contact

force between particles 3 and 4 has been taken as Fmax. It is seen that Kdm decreases as

the particle width is increased, which emphasizes the predominance of the particle mass

over the contact stiffness in influencing the wave speed.

Table 6.2 lists the wavelength, X, of the transmitted stress wave pulse as it traveled

down the single chain assembly. The wavelength showed no appreciable change as the

particle aspect ratio was changed. Earlier experiments done with circular disks (Xu and

Shukla, 1990) have shown that changing the length of the particles changes the velocity

and the VD ratio, where D is the contact interval (i.e., the particle length). In this set of

experiments the X/D ratio remained constant, as expected, as the particle width rather than

the particle length was being changed.

Photographs obtained from the experiments also showed how the stress wavefront

took the shape of the particle, as shown in figure 6.8. Figure 6.9 shows the change in the

fringe width with the fringe length of the wavefront fringe contour as the stress wave

propagates down any given particle. Near the contact area the fringe width and the fringe
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length were nearly equal for all the different particles and the fringes were circular. This

conforms with the Hertz contact theory which predicts circular fringes (Shukla and

Nigam, 1985). Further down the particle the free boundary effects become prominent and

the particle shape influences the shape of the wavefront fringe contour, as seen in figure

6.8. Wave propagation through a granular media occurs by contact mechanisms which

result in load transfer from particle to particle. Within a particle, however, the wave

propagation process is through a reflection mechanism, and each particle acts as a wave

guide. The stress wavefront observed is a resultant of the various reflection of the stress

wave from the free boundaries of the granular particle. For a wider particle the time taken

by the stress wave to reach the sides and reflect back would be more than for a narrower

particle, leading to a broader wavefront and a lower wave velocity.

Data from the various single chain assemblies was used to determine the normal

contact loads at different contact points. Figure 6.10 shows the typical normal contact

load variation for a single chain assembly. The contact loads, F, were normalized with

respect to the peak contact load occurring between particles 4 and 5, viz. F4.5 max' particle

numbers being counted from the top down. This contact was chosen for normalization

because at this point the wave had travelled through four particles, i.e. one wavelength,

and thus had stabilized. This normalization allows for easy comparison between different

experiments (Shukla and Damania, 1987). The normalized contact loads for the 25.4 mm

(1") diameter circular disk chain were available from earlier experiments done using

circular disks (Shukla and Damania, 1987).

Normalized contact load plots provide information about load or wave attenuation

as the stress wave travels from contact to contact. They also provide information about

the duration of contact which can be used along with the wave velocity to give the

wavelength of the transmitted stress wave pulse. Figure 6.11 gives the contact load

attenuation plots for the various elliptical particles as the stress wave traveled down the

sing!c; chain assembly. Again, the peak contact loads, F,..., were normalized to allow

direct comparison. As shown the load attenuation increased with the width of the elliptical

particles. For a wider particle the stress wave had to travel through more material for the

same distance of propagation. This resulted in increased material dispersion for particles

with greater width, as seen in figure 6.11. Values for peak contact load attenuation, as
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obtained from the experiments, are also listed in Table 6.2. The numerical distinct element

predictions are also shown in figure 6.11, and these numerical results generally agreed

with the experimental data to within 5%. It should be noted that the distinct element

model requires that different values of the model parameters o., and A be used for each

of the different particle shapes. This is related to the fact that the contact mechanics

behavior of each of these cases will change due to the surface radius of curvature, and

the internal wave propagation paths within the particle. Wider particles also produce

longer internal wave propagation paths within the particle, and this leads to an increase

in the attenuation characteristics of the particle. This agrees with the increasing values

of the A parameter in Table 6.1 since this parameter is related to the hysteresis associated

with the contact law.

6.4.2 Effect of Particle Surface Roughness.

Experiments were conducted to study stress wave propagation through single chain

assemblies of circular Homalite 100 disks of roughness 0.01 mm and 0.022 mm. Prior to

the dynamic experiments, static loading experiments were done to test the applicability

of the Hertz contact laws and to determine a validity zone for the governing equations.

Figure 6.12 shows two rough disks under compressive loading. From the static

experiments, it was found that the Hertz contact laws were valid for 2b<r<8b, where 'r'

is the radial distance from the contact point and 'b' is the half contact width. During

dynamic wave propagation in disks, the wavelength of the loading pulse is several times

the disk diameter, hence the loading is essentially quasi-static (Rossmanith, 1982).

Therefore, all the experimental data for analysis was collected from this zone.

Figure 6.13 shows the plots of distance propagated by the wave front as a function

of time for single chain assemblies of circular particles of roughness R, = 0.01 mm and

Ra = 0.022 mm. The average -velocities obtained for the two cases of roughness were 1020

m/s and 950 m/s, the velocity decreasing as the roughness was increased. Due to the

brittle nature of the rough edges, crushing of material at the contact zone occurred as the

wave passed which was also corroborated by the debris obtained at the contact zone. This

resulted in a decrease in stiffness at the contact. Moreover, as the roughness is increased

more free boundary is created, which results in increased scattering of the wave at the

free surfaces of the particle. Hence the wave suffers more reflections within the particle
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and the group wave velocity decreases. This accounts for the decrease in average wave

velocity as the particle surface roughness is increased.

Figure 6.14 shows a plot of the normalized contact loads as a function of time.

The dotted lines on the curves show the extrapolation that has been done based on the

position of the wave as determined from the photographs. The peak contact load did not

show an attenuation as was the case with the smooth disks. The contact stiffness of the

rough edges was different for different contacts and this resulted in the absence of any

continuous attenuation in the value of the peak contact load as was seen in figure 6.10.

Crushing of the rough edges as the wave passed through the contact caused a change in

the loading rate as seen in contact load behavior in figure 6.14. Actual photoelastic peak

loading of the contacts 3-4 and 4-5 is shown in figure 6.15 where it is seen that although

there is some local disturbance due to surface roughness, the photoelastic fringes are very

clear and the results can be stated with confidence.

For rough particles, the wavelength showed a decrease of 20% as compared to the

results obtained from smooth disks and no variation in wavelength occurred as the wave

passed through the chain of particles; e.g, the wavelength as seen from the first loading

curve(I-2) is 80 mm. Minor variations in the wavelength as the wave passed through a

contact can be attributed to the fact that the waveform had to change as it encountered

a disk of different contact roughness.

6.5 CONCLUSION

These experimental and numerical results of wave propagation in particulate

materials have shown the following:

(1). Wave velocity showed a strong dependence on the particle shape. The velocity

increased from 950 m/s to 1250 m/s as the particle width was decreased from 38.1 mm

to 12.7 mm, while holding the particle length at 25.4 mm. This change in the stress wave

velocity can be attributed to a change in the particle mass per unit length in the direction

of wave propagation. As the particle width is varieýd, the internal wave reflection

mechanisms influence the travel time of the wave within a particle. This influence was

also seen in the wavefront shape. The wavefront took the shape of the particle as the

stress wave traveled through it. The experimental results were well corroborated by

numerical distinct element modelling.

112



(2). The wavelength of the stress wave pulse showed no appreciable change as the particle

shape was varied, as long as the contact interval was kept constant.

(3). Both experimental and numerical studies showed that the peak contact load

attenuation increased as the particle width was increased. This was due to the longer

internal wave propagation paths within the wider particles, which resulted in an increase

in the particle attenuation characteristics.

(4). The wave velocity decreased as the particle surface roughness was increased. This

was due to waves being scattered and reflected more number of times inside the disk

because of the increase in free boundary due to surface roughness.

(5). With rough particles, the peak contact loads did not show an attenuation as was the

case with smooth disks. Moreover, the loading curves were not very smooth. This can be

attributed to the difference in contact stiffness between different rough contacts and also

to the crushing of the rough edges as the wave passed through the contact zone.

Further experiments are currently being conducted to study the effect of contact

stiffness and contact profile on dynamic load transfer in granular media. This is necessary

to reach a better understanding of the influence of the particle shape on load transfer

characteristics, wave velocity and wavelength. Experiments are also being conducted to

study two-dimensional assemblies of elliptical particles, and random assemblies of

particles of different size and shape as shown in figures 6.16 and 6.17. Surface roughness

definitely affects dynamic wave propagation in a significant manner. Further experiments

with higher roughness are being currently done to develop conclusive relations between

roughness and the various parameters which govern wave propagation.
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Table 6.1 Numerical modeling parameters and results for single chain

assemblies of various elliptical particles.

Particle Size F, Fma, K,) / m Wave Speed
(10• N/mr ) (N) (I() s2) (nvs)

25.4 x 12.7 mm 1900 1.4 1.7 891.5 1.91 1221

25.4 x 19.05 mm 4100 1.4 2.3 812.8 1.54 1095

25.4 mm dia. 6500 1.4 3.2 785.5 1.45 1058

25.4 x 38.1 mm 11000 1.4 5.1 739.2 1.32 992

Table 6.2 Experimental results for the dynamic loading of single chain

assemblies of various elliptical particles.

Particle Size Average Wavelength Radius of Peak Contact

Wave Curvature Load

Speed at the point of Attenuation*

contact

25.4 x 12.7 mm 1250 m/s 101 mm 3.2 mm 5.3 %

25.4 x 19.05 mm 1140 m/s 103 mm 7.1 mm 10.5 %

25.4 mm dia. 1070 m/s 102 mm 12.7 mm 13.0 %

25.4 x 38.1 mm 950 m/s 104 mm 28.6 mm 18.1 %

* This is the drop in the peak contact load as the stress wave travels across four contact

points, from contact 3-4 to contact 7-8.
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CHAPTER 7

THE EFFECT OF PRELOADING

7.1 INTRODUCTION

It has been recognized that the stress history has a profound influence on the cyclic

behavior of granular materials. The reason is that a preloading introduces changes in the

initial fabric and provides the material with the memory of the stress history. In

connection with geophysics the effect of initial stress on the oscillations of gravitating

spheres has been considered by Love (1927) for the case of an incompressible material

under hydrostatic pressure. He also points out that the compressibility must introduce an

important effect of buoyancy. By an extension of Love's method Macelwane and Sohon

(1936) have established equations for oscillations of a compressible gravitation sphere.

Birch (1938) has applied Murnaghan's (1937) theory of finite strain and shows that the

hydrostatic pressure without initial pressure gradient has no effect on the law of wave

propagation. Biot (1940) showed that when there is an initial pressure gradient there is

a coupling between rotational and compression waves. This coupling is due to a buoyancy

effect. This effect is small for usual earthquake waves, but becomes predominant if we

consider tidal waves or the modes of oscillation of the earth.

Due to the difficulties in carrying out experiments to investigate directly the effect

of prestress on wave propagation phenomenon, researchers instead studied the effect of

prestress on the strength or shear modulus of granular materials.

The mechanism underlying the observed strengthening effects in the cyclic behavior

of precompressed sand was investigated by Ishihara and Okada (1978) by the use of the

triaxial shear test apparatus. The effect of prestress on the liquefaction resistance of sand
was conducted by Finn, Bransby and Pickering (1970). They showed an increased

resistance to liquefaction occurred when small shear strains (below the level of phase

transformation) were applied on the s'ind sample prior to the cyclic loading test. Whereas,

preshearing involving large shear strains (above the level of phase transformation) tended

to cause the sand to liquefy easily. Similar strengthening effect due to the small

preshearing was also noted by Lee and Albaisa (1974) in their study of cyclic strength
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of dense sands through the use of the cycle triaxial test device. The effect of small

preshearing bears its practical significance in determining cyclic strength of sand deposits

subject to a series of small earthquakes occurring over a period of years. Through a

shaking table test, Seed, Mori and Chan (1979) showed that the sand subject to a

preshearing could sustain several times more cycles than the sand could do in its initial

condition without preshearing. Taki and Kitago (1974) also observed an increase in static

modulus of a loose dry sand which had undergone several hundred cycles of small-

amplitude vibratory stresses. Ishihara (1978) conducted cyclistatic triaxial test to study the

possible preshearing effects on the cyclic behavior of saturated sand. He found that small

preshearing developed less pore water pressure and shear stress in both sides of triaxial

compression and extension. Large preshearing made the material stiffer on one side of

triaxial loading, compression or extension, but softer on the other side. The increased

resistance to liquefaction or increased stiffness in static loading due to small preshearing

is expected to result from the hardening phenomenon which generally occurs in granular

materials due to plastic yielding. Chen, Ishibashi and Jenkins (1988) performed torsional

experiments on a hollow cylindrical sample consisting of glass spheres with two different

diameters to investigate preshearing effects on stress-strain response and dynamic shear

modulus. They found that the stress-strain response is stiffer when the material is sheared

in the direction of preshearing, softer when sheared perpendicular to it and little changed

when sheared in directions 450 to it. The dynamic shear modulus is sensitive to the

preshearing. There is little reduction in the modulus when the material is sheared in the

direction of preshearing and greater reduction when sheared perpendicular to it.

An experimental investigation of the effect of preloading on wave propagation

behavior in granular materials was conducted. A range of ratios of the biaxial

compression was used in this study. Investigation was also conducted on the effect of the

loading magnitude when the loading ratio was a constant.

7.2 GENERAL THEORY UNDER INITIAL LOADING

The behavior of stress waves in soil cannot be only accounted for by elastic

anisotropy or a change in elastic coefficients and the existence of stress introduces an

essentially new aspect in the nature of the wave propagation. The velocity of propagation

depends on the stress and it is possible to obtain reflection in a medium which has
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uniform elastic properties but contains discontinuities of initial stress.

Consider a state of initial stress such that a principal direction is always parallel

with the z axis, while the small additional strains are assumed to constitute a state of

plane strain in the xy plane. The initial stress is defined by the components S,,, S22 and

S12 referred to rectangular axes x, y. They satisfy the equilibrium conditions

S+ + +p (x,y)X(x,y)--O

(7.1)
as- I + " a s F (x y )Y (x ,y ) --

where p is the specific mass and X, Y the components of the body force per unit mass.

An elastic element of coordinates x, y acquires the coordinates 4=x+u, Tl=y+v after

deformation and rotates through an angle

o0 1 (av/ax-au/ly) (7.2)
2

The stress components after deformation referred to directions which rotate with the

material are

01 II+ II

G22 = $22+S22 (7.3)

G 12 SI2SI2

The components sI, S22 and S12 of the stress increment depend only on the strain. This

stress may be referred to the original x, y directions and the components then become in

first approximation
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S=II- S

(Y ' s 22S (7.4)

a = s 12 +±(S -S2 2 )o

These are the stresses at the point T, fl along the x and y directions.

These components satisfy the dynamical equilibrium relations

(7.5)

where T( r') is the specific mass after deformation.

Now we can express these equations in terms of the independent variable x, y by

using transformations of the type

o T- X a x a. Y. __y (7.6)• __ + • • , etc.

a-,- a:aa

The partial derivatives of x, y with respect to T, r are in first approximation

Ox--_1 (1 +ih' 1f' -- Da
atI +

(7.7)

ay 1 av 'l 1 D I al
-t D ax OI Oý -a,

where D is the Jacobian

au au

D- dt(ý,f) - T x (7.8)

d(x,y) av + a-v

Using these relations and the property
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p(x,y) = D ýt(ý,T)

expressing the conservation of mass Eqs.7.5 become

__ +.___ +e +e _. 2 -(e -o))
ayx y x C ay &

- ( e + O ) - -. -. + p X ( ý , ,l ) = p

1 (7.9)

X + Y+e X +e, "Y--(e --(0U
aX dy &'C ad y

ady t2V-(e ÷m+0)_•y+÷pY({,) - .•

in which e~x =u/dx, ely =rv/dy, exy =,ý,(Dv/ax+au/ay) are the strain components. We now

Ssubstitute the values eq.7.4 for Yxx, oYyy and ay and drop terms of higher order than the

first; the above equations become

Isi, as12 +puX+pva+pcoYjY 1 2Sa +(SI-S 22)__wa-, , 7.V +oo 12 a

I
+e d-- I d--2 -e dS + aS 2 jp -2

Y ax a-y a. a bX t

SaS(7.10)
ds1, ds 22  dY dY d$o) do ) 0

a x dy 7x dy22 x 12 d

dS12  dS22 S2a d22v~

e + e _v e x +-p -

dx• P-x d yxvS:

In order to obtain these equations account must be taken of the initial equilibrium

conditions eq.7.1 and identities
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I

Ide,,/ay = (a/ax)(e,.-(0)

(7.11)
Ie, lax = (a/ay+W)

The stress increments sH1, S22 and si, depend only on the strain. They may be taken

as linear functions of the strain components
Sll=Blexx+BI2eyy+B13CXy

S22=B 2,e,,+B 22eyy +B2,e,.e (7.12)S~s12=B3,ex.+B32eyy+B33exy

Assuming the existence of a potential energy function of the strain it is possible

I to prove that the elastic coefficients must satisfy the relations
S~B12+S12=B2,+S22

B31-SI2=B3,+V2S 12 (7.13)

B 2 3 -S 12 =B 32 +, S 2

It is only in case of initial hydrostatic pressure (S 1 1=S 2 2 , S 12 =0) that the elastic coefficients

will be symmetric (B0 =B1j).

The boundary conditions along an element dx, dy of the boundary contour are

found to be

(S, -S 12())dy-(s 12 -S22 o))dx=dF,I (7.14)
(s12+SIc-o)dy-(s2 2+S 2 -o)dx=dFy

where dFX, dFY are the projection of the force acting on the boundary element dx, dy.

I We consider a simple case of a hydrostatic pressure with uniform pressure

gradient. This approximates the state of stress in a soil material near the surface of the

I earth. Where under the action of gravity the influence of creep has been acting a

sufficiently long time so that the stress condition at every point has become isotropic.

I Taking the y axis positive downward we have

X=O, Y=g.

where g is the acceleration of gravity. Also S11=S 22 and S 12=0. We assume the specific

mass to be uniform (p=constant). With these equations eqs.7.10 become
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IV
Say ax at

I a~ a~(7.15)
as12 22 all a2V,--•-+n.}- Pg--.. - - p-T
ax av ax t

These equations are different from the classic ones for an initially unstressed medium.

The additional terms are due to the existence of a pressure gradient. In order to

investigate the behavior of tne waves for those case, let us assume the stress-strain

relations to be Hooke's law for an isotropic medium

s 1=Xke+ 2 Ge,,

s22=X~e+2Gey (7.16)

s12=2Ge~y

By substitution in Eq. (7.15) we find

GV 2 u+(G+k) ae+pgg -_ p 2u
7X FJX at2

(7.17)

GV 2 v+(G + .) ae Pa a2V
S--at--7

We derive the following equations for the dilatational e and rotation wo by the

usual method

(2G +.)Ve 22pg -a P a2•e

U (7.18)

ae &(1
GVIw-2pg. -= pr at--T

These equations show the existence of coupling between longitudinal and

transversal waves. This coupling is due to an initial pressure gradient. The physical

meaning of this coupling is as follows. Consider a dilatational plane wave propagation in
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the horizontal direction. At a point where the material is compressed it is denser and

therefore has a negative buoyancy, while in the region of positive dilation the buoyancy

is positive. The dilatational wave is therefore associated with a periodic distribution of

vertical buoyancy force which generates a transverse wave. Conversely a transverse wave

propagating in the horizontal direction produces a dilatational wave. In this case a portion

of the material which is horizontal in the initial state undergoes a rotation and the initial

pressure gradient acquires a horizontal component of alternating sign which causes a

dilatational wave. It has been shown that the effect increases with the wave-length.

7.3 EXPERIMENTAL PROCEDURE

In last section, it has been shown that even in an isotropic material there is a

coupling between longitudinal and transversal waves due to the initial pressure gradient.

In a granular material, even under uniform initial contact loads, there is an inherent stress

gradient inside the particle. This then leads to an inevitable coupling between longitudinal

and transversal waves. This kind of coupling as well as particle reflection effects result

in an extremely complicated wave phenomena in a granular material under preloading.

Experiments were conducted on BCC models under biaxial preloading, as shown in Fig.

7.1. Attention was concentrated on the investigation of the effect of preload ratio and

amplitude on wave velocity and wave attenuation. Dynamic photoelasticity along with

high speed photography were used in this study to record the dynamic event. The granular

media was simulated by Homalite-100 discs which were so arranged as to simulate a

body centered cubic packing granules. A specially designed loading fixture, as shown in

Fig. 7.1, was used to obtained the biaxial preloading. The loading fixture consists of a

cylinder driven by a hydraulic pump, a block which is mounted at the end of the cylinder,

a three block movable frame and a fixed frame used to support the cylinder and the

movable frame. When the cylinder moves down, the block on the cylinder loads the

model from the top. The model then passes force to the bottom block of the movable

frame. The bottom block then pulls the two side blocks inward through the links

connecting them. Therefore the model inside the fixture is loaded biaxially. The maximum

preload is limited by the capacity of the pump. The preload ratio is varied by using

different spacers bc*,ven the model and the movable frame. A 11 rows by 11 columns

disc assembly was used to simulate the BCC granular media. Dynamic loading was

131



achieved by firing a small amount of 50 mg PETN in a specially made charge holder as

aiso shown in Fig.7. 1. The charge holder was placed near one corner of the disc assembly

to avoid the reflection effect on the particles of interests. In the following discussion, x

is defined as the direction of wave propagation, while y is the direction perpendicular to

the wave propagation.

7.4 RESULTS AND DISCUSSION

Dynamic photoelasticity has the advantage of providing a view of the whole stress

field during wave propagation in a granular assembly under preloading. First, the

assembly was loaded statically. A picture of the static fringes was taken for the

determination of the biaxial preloads. Four typical pictures of dynamic f,1 ,'!es obtained

for an experiment with the preload ratio being P,/Py=1.5 are shown in Fig.7.2. Wave

propagation in a granular assembly under preloading can be seen clearly in these pictures.

The wave propagation phenomena in biaxial preloaded granular media shows the similar

dependence of the angle made by the normals of contacting granules on wave propagation

to that of zero preload condition. When the contact angle is equal or larger than 900, no

mechanical signal can pass through that contact. The disturbance of the preloading fringes

gives the position of the wave front as well as the average wave velocity. While the

dynamic fringes recorded by the high speed camera along with the static preloading

fringes give the wave attenuation. Wave velocity as a function of preload which is in the

direction of wave propagation for the ratio of P/PY equal to 4 is shown in Fig.7.3. The

velocity as a function of preload which is in the direction perpendicular to the propagation

for the ratio of PJ/Py equal to 0.25 is shown in Fig.7.4. It can be seen from these figures

that the wave velocity increases with the increase of preload for both ratios. When the

preload is less than 60 % of the dynamic load, the velocity increases at an increased rate

for both preload ratios. It increases at a lower rate afterwards. Part of this is due to the

closing up of the pore space thus forcing individual particle into better contact. The

maximum preload used in this investigation is 4500 N, which is 90% of the peak dynamic

load. Under this maximum preload, the maximum wave velocity for the preload ratio of

0.25 is 1380 m/s, which is about 28% higher than that of zero preload. The wave velocity

for the ratio of 4 is less. than that of 0.25. The average velocity difference between these

two preload ratio is less than 5 %. One reason for this is because the particles used are
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isotropic, preload in either direction will have the same effect on the material density of

particles in a BCC assembly. As the preload had little effect on either the fabric of the

BCC assembly or the wave travel path, the wave velocity is almost independent of the

preload ratio. The small difference of the average wave velocity between these preload

ratios suggests that the wave velocity is dependent of the average preload. The wave

velocity plotted as a function of the average preload is shown in Fig. 7.5. The velocity

increases as the average preload increases.

The wave attenuation for the wave travelling from the disc after the one adjacent

to the explosive plotted as a function of preload for these two ratios is shown in Figs.7.6

and 7.7. For zero preload, the wave attenuation for the same distance of travel is 18 %.

This attenuation was increased by about 60 % as the preload increases to 4500 N for the

preload ratio of 4. The wave attenuation for larger preload ratio is less than that of

smaller preload ratio. This is because the initial contact length in the direction of wave

propagation for the ratio of 4 is larger than that for the ratio of 0.25. The larger contact

length leads to less reflection and less dispersion at the contacts. Thus results in lower

wave attenuation. However, the energy from the explosive tends to pass through both

chains in contact with the charge holder in the same amount. The final contact length

difference at the corresponding points is negligible. Thus the maximum difference of

average wave attenuation between these two ratios is about 10%.

The fluctuation and scattering of experimental data was largely due to the friction

effect which results in a certain amount of variation in the initial preload at different

contact, therefore leads to different initial contact length.

7.5 SUMMARY

The results of this investigation reveal that preload amplitude has effect on both

velocity and attenuation of stress waves in a BCC granular model. However, the preload

ratio has less effect on wave velocity than on wave attenuation. Due to the limited

capacity of the biaxial preloading fixture, the maximum preload obtained in this

investigation could not be larger than the dynamic loading used. It was noted in this

investigation that the peak dynamic load generated by the same amount of explosive was

a constant for different preload amplitude. This means the increment of the dynamic load

decreased as the preloads increased, as shown in Fig.7.8.
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CHAPTER 8

MODELING WAVE PROPAGATION IN GRANULAR MEDIA
USING ELASTIC NETWORKS

8.1 INTRODUCTION

Geological materials such as sand, gravel and rock are composed of large numbers

of individual particles packed in complex spatial arrangements. Such materials are

commonly referred to as granular media, and the load transfer is primarily conducted

through contact interactions between adjacent particles. The static and dynamic response

of these types of materials has been studied for many years by members of the soil

mechanics and geophysical community. An understanding of the dynamic behavior of

such materials is important in many geophysical applications involving seismic and blast

loading phenomena, and active interest also exists in applications to dynamic compaction

of powders in pharmaceutical and metallurgical processes.

Early attempts at modeling granular media behavior used continuum mechanics,

e.g elasticity, plasticity or viscoelasticity. However, it was gradually realized that the

complex microstructural nature of these materials requires that a microstructural model

be used to more accurately predict the mechanical behavior. Granular media has been

commonly described as a collection of distinct particles which can displace from one

another with some degree of independence and which interact basically only through

contact mechanisms. Because of this constituency, these materials establish discrete paths

along which major load transfer occurs; see for example the work of Oda, Konishi and

Nemat-Nasser (1982). The local microstructure or fabric, i.e. the local geometrical

arrangement of particles, plays a dominant role in establishing this discrete load transfer

phenomena. With regard to the propagation of dynamic loadings, it is found that the

discrete nature of the media creates a structured waveguide network of selective paths for

the waves to propagate along. The propagational characteristics of wave speed, amplitude

attenuation, and dispersion are thus related to the local fabric and the established wave

paths.

Early attempts at modeling granular media involved simulations with arrays of

elastic disks or spheres. Studies of the dynamic response of granular media using a
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microstructural approach began with the work of lida (1939) on simple lumped mass-

spring systems. Later, classic studies by Duffy and NMindlin (1957) invetigated the

contact mechanics effects on the dynamic load transfer. More recently, there has been

a large volume of micromechanics research applied to a variety of complex materials.

Fabric tensor theories have been developed by Nemmat-Nasser, et.al., (1982, 1984), and

Oda, et.al., (1982) to investigate the microstructural constitutive behavior of granular

media. A special continuum mechanics theory called the distributed body theory was

developed by Goodman and Cowin (1972) for materials with discontinuous fields, and

this model was applied to wave propagation in geological materials by Sadd and Hossain

(1988). Numerical simulations of wave propagation in these materials was carried out by

Sadd,et.al.(1989b), Bathurst and Rothenburg (1989), and Thornton and Randall (1988)

using the distinct element method first formulated by Cundall et.Q' (N"79). Extensivc

experimental studies using methods of dynamic photomechanics and strain gages have

been conducted on these problems by Shukla and Nigam (1985), Shukla et.al.(1988a), and

Shukla and Damania (1987).

Based on the fact that granular materials transmit loads only through nearest

neighbor contact, this mechanism may be modeled as a simple load carrying link between

adjacent mass centers. Through the application of this concept, a load carrying network

can be established for various particle packing geometries, see Figure 8.1. Such network

theories have been employed in static theories for granular media by Trollope and

Burman (1980), Bagster and Kirk (1985), Bideau et.al. (1986) and Thornton and Barnes

(1986). In related work, Burt and Dougill (1977) used a simple planar pin-jointed truss

network to simulate the stress-strain behavior of heterogeneous materials which exhibit

progressive failure and strain softening behavior.

Following along these similar lines, Boardman (1990) developed a dynamic finite

element model for wave propagation studies based upon the elastic network

representation. In his work, each link in the network was taken as a one-dimensional

dynamic bar element with lumped mass at the end nodal points. The material was chosen

to be cohesionless, thus requiring that no element be capable of transmitting tensile

loadings. This produced a nonlinear finite element model which was solved using an

iterative scheme. The present study is a generalization of Boardman's work to include
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both normal and tangential contact loadings through the development of a new one-

dimensional dynamic element. The element possesses both normal and tangential stiffness

and damping coefficients whose numerical values were obtained from dynamic

photoelastic experiments. Comparisons of the proposed numerical model with

experimental results are given.

8.2 THE FINITE ELEMENT MODEL

As previously mentioned, a granular media is composed of a large number of

independent particles in contact with each other as shown in Figure 8.1a. For the case

of dry cohesionless media, neighboring particles transmit normal and tangential loads only

through contact mechanisms. This type of load transfer process can be modeled by

replacing each contact interaction with a tensionless load carrying link with prescribed

load transmission characteristics. Applying this process for all contacts in an aggregate

assembly, a network of links is established as illustrated in Figure 8.lb. For the case of

homogeneous circular particles as shown in Figure 8.1, all links connect the mass centers

of the particles to each other.

The load transfer characteristics of the links in such established networks are

modeled using the finite element method whereby each link is represented by a one-

dimensional finite element similar to bar or beam elements. The shape or interpolation

function concept normally used in finite element formulation is not used for this case

because of the contact mechanics processes that occur at points within the element. Thus

the generation of the element stiffness matrix is accomplished through a direct stiffness

method rather than using a variational scheme.

The generic element, shown in Figure 8.2, is taken to be a two-noded element

connecting the particle centers. The kinematics of each granule is determined through

specification of the two in-plane displacements and the rotation about the mass center.

Thus, the interaction between two disks is characterized by the generalized element

displacement vector (u,,v 1, 0 1,u2,v2,02)}. The corresponding generalized forces would

include the horizontal and vertical nodal forces and a nodal moment. Therefore the static

element equation can be written as
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F

O ,[ -_ M I (8 .1)

V - F [

0o2 Mj

The elements of the stiffness matrix Kj• ,represent the ih-force corresponding to

a unit j'"-displacement. For example, in order to calculate K, an element displacement

vector of the form ( 1,0,0,0,0,0)'r is applied to the element model. Through the normal

contact, equilibrium produces the force system shown in Figure 8.3a, and this results in

an element force vector of the form {Kn,,O,0,-Kn,0,0JT,where K, is regarded as the normal

stiffness between the two generic disks. It should be pointed out that for the static case,

this value could be determined from Hertz contact theory. Thus K,1,( = -K14(e) = K..

Next consider the case of a displacement vector of the form {0,0,1,0,0,0}. At the

contact point, there is a relative tangential displacement Av=01 r1, and the tangential

contact force may be written as F-=Ktr1 , where K, is the tangential stiffness coefficient.

In order to maintain equilibrium, each disk must have forces and moments as shown in

Figure 8.3b. For this case the force vector thus becomes (0,K,rI,K,r1 2,(,-K~r,,-K,rrr2)*, and

thus K,13()--O, K2 OK=K,r,, K33()=Kr12, Kr=- r)=), K -Kr K()=Krr, The various other

stiffness elements are computed in an analogous fashion yielding

K 0 0 -K 0 0
K, Kr 0 - K, r?

Kr' 0 -K,r K,rr 2IK •e l I 1 = ( 8 .2 )
K,, 0 0

K -Kr2

K rg

Because real granular materials exhibit damping, the finite element model should
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contain this feature. This is easily incorporated through a velocity dependent dashpot at

the element level, and by employing similar methods as outlined for the stiffness matrix,

a damping elemem matrix JC'J, can be determined. The inertia modeling will assume

that the disk mass is concentrated at the disk center(i.e. at each node) and thus the mass

matrix IM"e)I will be diagonal. Therefore, the complete model is given by the usual

element equation

[M0eW{ii} + IC•,]{L.} + jK =)lu} = {pl°,} (8.3)

The discrete nature of cohesionless granular media causes the load transfer

between particles to behave discontinuously in that if any two adjacent disks displace

such that the relative distance between their centers becomes greater than the sum of their

respective radii, the contact forces must vanish. Therefore, the contact model can only

transmit compressive forces and thus the actual stiffness and damping matrices for any

typical element connecting the ith and j"h disks must be multiplied by the function

H((ri+rj)-Qj ), where H(.) is the Heaviside step function operator and Q,j is the computed

distance between the disk centers. This situation causes the numerical routine to become

non-linear, and requires a load incrementation procedure along with an iteration solution

scheme based on the Newton-Raphson method. Thus during the load incrementation

process all elements are continually checked for compression-only behavior resulting in

some elements being turned off while others possibly being turned back on. Finally, the

time integration of equation (8.3) was accomplished using a direct integration method

based on the Newmark scheme.

8.3 DETERMINATION OF MODEL PARAMETERS

In order to apply the developed finite element model to specific problems of wave

propagation in granular media, the mass, stiffness and damping matrices must be

determined for the media under study. Since the inertia modeling employed the lumped

mass concept, the elements of the diagonal mass matrix are completely determined by the

density and size of the individual particles. The stiffness and damping matrices are

however, not as easily calculated. As mentioned previously, for the static case the normal

and tangential contact stiffnesses Kn and K, may be estimated from Hertz or more general

contact theories. However, for the dynamic case the contact mechanics problem becomes
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quite difficult to solve. It is for this case that experimental results were used to help in

the determination of particular parameters.

The specific experiments involved the use of dynamic photoelasticity to

photographically collect information on the wave propagation in transparent model

assemblies of granular materials. Details on the experimental techniques can be found

in previous papers (Shukla and Nigam 1985, Shukla et.al. 1988, and Shukla and Damania

1987) and will not be repeated here. The photographic data collected at various instants

of time provides sufficient information to determine the wave speed and the amplitude

(intergranular contact force) behavior for specific granular assemblies which have been

subjected to explosive loading.

In order to determine the normal contact stiffness and damping parameters,

experiments were conducted on a single straight chain of equal sized disks of radius

12.7mm and thickness 6.35mm. The disk material was Homalite-100 which has a mass

density of 1.2 x 10' kg/m3. Typical photoela.;tic data in the form of isochromatic fringe

patterns is shown in Figure 8.4 which illustrates a time sequence of the dynamic event.

Through a trial-and-error process, finite element predictions were calculated until

satisfactory agreement was reached with the experimental data. Thus by matching both

the wave speed and the amplitude attenuation, the normal stiffness and damping

parameters were determined as K,, = 7.04 x 106 N/m and C,, = 35 Ns/m.

The tangential stiffness and damping coefficients were determined from a simple

branch type of assembly shown in Figure 8.5. For this geometry, there exists tangential

contact forces between particles in the assembly. Again fitting the numerical predictions

with the experimental data determined the values K, = 106 N/m and C, = 10 Ns/m.

8.4 MODEL RESULTS

The developed elastic network, finite element model will now be used to simulate

the propagation of dynamic signals through specific assemblies of model granular

materials. For all of the cases under study, the input loading was taken to be a triangular

time pulse of 60as duration. It was felt that this type of input would reasonably simulate

the explosive loadings used in the experiments. The time stepping scheme tsed an

increment At = l~ts. Comparisons of the numerical predictions arc made with existing

photoelastic experimental data.
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8.4.1 Single Chain Assembly

The first example investigated was the straight single chain assembly previously shown

in Figure 8.4. For this case the wave speed predicted from the model was 1071 m/s

which matched quite well with the experimental value of 1080 m/s. In regard to the wave

amplitude as measured by the intergranular contact load, comparisons were made for the

maximum contact load between disks. These peak values were then normalized with

respect to the input loading to provide a consistent and convenient comparison technique.

Results of these peak contact load values for this assembly are shown in Figure 8.6 with

the upper number specifying the normal loading, the lower number giving the tangential

component, and the values in parentheses corresponding to the experimental results of the

normal component. Since the single chain is a symmetric assembly, there will be no

tangential contact loadings developed irregardless of the values of the tangential stiffness

and damping. Of course, numerical results for this case matched experimental values

quite well since this assembly was the one used to calibrate the numerical model

parameters.

8.4.2 Branch Assembly

The second assembly that was studied was the simple chain branch geometry shown

previously in Figure 8.5. The two branch angles 0, and 02 control how much wave

motion will be transferred into and along each branch. Figure 8.7 shows results of the

contact force ratio P]P 2 for both the normal and tangential components for the case of

0, = 02 = 300. The numerical predictions compare reasonably well with the experimental

results. Various other cases with different branch angles have been computed, and some

of these results are shown in Table 8. 1. It is seen from this Table that the normal peak

contact loading in a given branch generally decreases as the branch angle increases.

8.4.3 Hexagonal Close Packing

Another assembly which was studied was the hexagonal close packing as shown in Figure

8.8. For this case the disks are in their closest packing situation with six contacts per

disk. Waves will move in several different paths determined by the assembly structure

and the input location and direction. For the loading shown in the Figure 8., numerical

values along a main transfer path and a secondary path are shown. Again, numerical

results for both the normal and tangential peak loadings are shown and experimental
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normal loading values are also given for comparison. It is observed that for this case

very little tangential loading occurs. Figure 8.9 illustrates a second hexagonal assembly

that was studied in which the loading direction has been changed. Again very little

tangential loadings are present for this case. The effect of removing a disk to create a

void in this geometric fabric is shown in Figure 8.10. Results for this void case appear

to cause an increase in the local tangential forces around the void. Finally Figure 8.11

illustrates the case of replacing a disk with another of higher density and stiffness to

create a heterogeneous inclusion. The inclusion was modeled by a disk of steel material

with properties K, = 1.58 x 10' N/im , Cn = 78.72 N s/m , p = 7.8 x 10' Kg/m3. The

inclusion, like the void, causes local wave scattering; however, it appears that the

inclusion produces less local tangential loadings than the void case.

8.4.4 Random Assembly

The final assembly which was studied was a randomly arranged system of equal sized

disks as shown in Figure 8.12. The irregular packing geometry produces a quite varied

wave propagational system, and creates tangential loadings at most of the intergranular

contacts. The comparisons of the numerical predictions with the experimental data for

the normal components are not quite as good as found in the other assemblies. This may

be a result of the significant amount of tangential loading present, and could imply that

a more sophisticated tangential stiffness law may be needed.

8.5 CONCLUSIONS

A microstructural wave propagation model has been presented for cohesionless

granular materials in which the dynamic loaid transfer between adjacent particles is

simulated through a special finite element. The particulate media is thus modeled by an

elastic network which accounts for the contact interactions and local microstructure. Both

the displbcement and rotation of the particles are taken into account, and this leads to a

scheme to calculate both normal and tangential intergranular contact forces. Necessary

model stiffness and damping parameters were determined from experimental photoelastic

data from simple single chain and branch geometries Several different types of two-

dimensional assemrrblies were then studied using the proposed numerical routine, and

comparisons with existing experimental data were made. Numerical predictions were

generally within 10-20% of most of the experimental data.
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The current stage of the model employing linear stiffness and damping properties

gave reasonable results. However, it appears from both the experimental correlations and

general insight to the nature of the dynamic contact phenomena between particles, that

a more sophisidcated nonlinear contact law would provide a more accurate model of the

physics. Such nonlinear contact laws have been used with success in our distinct element

modeling and future directions of this type of modeling could include such a nonlinear

finite element along with a more generalized tangential force response.

The present finite element method of analysis can be compared with our other

numerical technique employing the distinct element method (Sadd,et.al.1989a).

Comparisons of the results of the two methods with experimental data indicated that each

numerical technique provided about the same level of correlation. It was generally found

that the finite element scheme was more computationally efficient, solving the same

problem on the same hardware in a shorter CPU time. However, the distinct element

model allows for general (finite) particle motions; whereas the current finite element

approach is limited to small deformations, thus precluding significant particle or fabric

rearrangement.

Table 8.1. Peak Contact Force Ratio for Branch Model

0, Side 02 Side

01 02 Normal Tangential Normal Tangential

30 30 .554 -.054 .554 .054

30 45 .631 -.062 .486 .082

30 60' .694 -.078 .399 .106
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(a) Simulated Granular Media

(b) Equivalent Elastic Network

Fig. 8.1 Elastic network modeling concept
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S • Disk 2

Finite Element

Disk 1

Fig. 8.2 Basic element of the elastic network

(a) Disk Equilibrium for Normal Loading (b) Disk Equilibrium for Tangential Loading

Fig. 8.3 Disk equilibrium
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Fig. 8.5 Simple branch assembly
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CHAPTER 9

DYNAMIC GRANULAR INTERACTIONS USING
BOUNDARY AND FINITE ELEMENT METHODS

9.1 INTRODUCTION

Wave propagation in granular materials occurs by means of dynamic signal

transfer through each of the granular contact points in the material. Our past modeling

schemes to simulate this type of wave motion have employed the distinct element method

(Sadd et.al., 1989a, 1989b, 1991a) and the elastic network method (Shukla and Sadd,

1990, Sadd et.al., 1992). Both of these models require specific contact load transfer

relations which provide the load-displacement characteristic of the granular contact. Our

past work has used experimental data to provide estimates of these stiffness parameters.

In this section we provide a review of our efforts to use boundary element methods

(BEM) and finite element methods (FEM) to determine these basic dynamic granular

interactions for general elastic granules.

The dynamic interaction of two or more elastic granules in contact can be

classified as a nonlinear initial/boundary value problem of elastodynamics. Such

problems are normally attacked using methods of finite or boundary elements. The finite

element scheme is based on an interior discretization concept whereby the entire domain

is divided into elements, and the solution is obtained at all interior nodal or Guass points.

The boundary element method however, only discretizes the boundaries of the domain

under study. The resulting solution determines unknown boundary values of displacement

and/or traction. It would therefore seem that this method would be quite appropriate for

the granular contact problem in that one could investigate the dynamic load transfer from

granule to granule by only analyzing the granule boundaries. The boundary element

method would thus involve fewer unknowns by avoiding the calculation of the solution

of the stress field within each granule.

The basis of the boundary element method lies with development of the integral

formulation of the general elastodynamic equations. Integral formulations have a long

history and can be traced back to the work of G.Green in 1828. Elastodynamic

applications of the boundary element method were originally conducted by (Cruse and

Rizzo, 1968, Cruse,1968) by incorporating the Laplace transform scheme. Direct time
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dependent BEM methods have been developed and utilized by (Cole, et.al., 1978) and

(Manolis, 1983 and Manolis and Beskos, 1988), and (Brebbia, 1985) provides a

comprehensive review of these BEM applications.

This chapter will present analyses using both boundary and finite element methods

to calculate the basic interaction mechanics between two or more granules in contact. A

dynamic input will be applied to one of the granules, and the transient load transfer

through the contact point(s) will be computed. Of specific interest will be the wave

transfer speed and attenuation through the disk-contact system. The photoelastic and strain

gage experiments have shown that the wave velocity in an assembly of disks is less than

that in the disk m-aterial itself. For a material of Homalite 100, the P-wave velocity is

approximately 2000 m/s, whereas in an assembly of disks of Homalite 100, the wave

velocity has been measured as 1080 m/s. The effect of the granule shape and assembly

geometry will also be presented. Compariscn of the numerical results will be made with

existing experimental data.

9.2 BOUNDARY ELEMENT METHOD FORMULATION

The basis for the integral equation formulation in elastodynamics is the dynamic

extension of Betti's reciprocal theorem. This theorem is derived from virtual work

considerations and essentially relates two different dynamic states for the same elastic

body. The obvious choice for one of two elastodynamic states is the unknown solution

that is to be found, while the second state is normally chosen to be an appropriate Green's

function.

Using this procedure the resulting integral statement can be developed

C )u,t) ' (G(x,t ;f)t(x, )-F (x,t-;.)u (x,T ))dT dS(x) (9.1)

where ý is the source point and x is the receiver point, GQ and FJ are Green's function

tensors, and u, and t, are the displacement and traction on the boundaries. The coefficient

Ci is specified by

f 0 for F V,
C0(ýl 8j4 for F •V (9.2)

I 0.58,i for r - S

where V, is complement set of V+S.
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Methods of solving the basic integral equation (9.1) have included direct time

domain approaches, and the use of Laplace and Fourier transformation. Our initial

research investigated the use of both time domain and Laplace transform domain

techniques. Better success was achieved using the Laplace transform method, and this

technique was then used for our detailed studies on granular interactions. The Laplace

transform is defined in the standard form as

f(x,s) = J f(x,t)e- T'dt (9.3)

where s is the Laplace parameter. In the Laplace domain equation (9.1) becomes

C1 ( )a,(•,s) -f• (Gj(x; ,s)i(x,s) - FP(x;;, ,s)a.(x,s))dS(x) (9.4)

Comparing equation (9.1) with equation (9.4) it can be seen that in the Laplace domain

the equation involves only the integration over space. The problem thus becomes static-

like for a fixed value of parameter s. The unknown boundary values of ui and tý in

equation (9.4) can be solved by using standard methods from boundary element theory

by dividing the boundary into a known group of boundary elements thereby reducing the

problem into a set of algebraic equations. The unknown displacements and tractions ui,

ti, are related to the corresponding nodal values using appropriate interpolation functions.

The element employed in this calculation is a three node type using quadratic

interpolation. Equation (9.4) is thus discretized into an algebraic system

IKIM + [GIlt) = 0 (9.5)

where {u},{t) are the displacement and traction matrices, and IKI and [GI are coefficient

matrices. The number of the variables in the equation (9.5) is 4n (2n displacements and

2n tractions) where n is the number of nodes. In order to solve equation (9.5), the

boundary conditions have to be set. In general for non-contacting boundaries either the

displacement or the traction is known for each node. However in the contact zone both

,he displacements and tractions are unknown, and some additional conditions have to be

used. We assume that the contact is a no-slip type. The no-slip contact condition requires

that the displacements and tractions be continuous across the contact zone. A general
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contact model is shown in Fig.9.1. This model includes three particles which are denoted

as domains Q1,K2. and Q3, and boundary segments 1-') and r 2) represent two contact zones

between the particles. The analysis procedure starts by first establishing boundary

equations for each domain. The displacements and tractions are then separated into two

parts. One is related to the contact zone and the other is related to the remaining segments

of the boundary. Thus the coefficient matrices [K] and [G] also follow a corresponding

decomposition. For domain QiŽ the algebraic BEM system would readKI 11{ t I11G 0 t} 96
K(1) K•°xl uL G(1) G(m ti 96

where u, is the displacement on the non-contact boundary of domain Q, and u,(1) is the

displacement on contact boundary I-11) of domain K, and t, and tj(1 ' are the corresponding

tractions. For domain C4 the system would be

FK( X1) K(1)2 K(lX2) 14 G~xl) G(1)2 G(1 x2)1(1)1

K 2
22 K2~2 ILU2 {~ ' G 2 ~ 2 (9)

LK RXI) (2)2  (~2X2) u( (XI ) G (2)2  G (2X2)j (2)1

where u2 U21, u2(2 ) and t2, t2 ), t2(2) follow similar definitions as before. Similarly the

equation for domain £23 can be obtained in a similar manner.

On boundary r") we have

u 1() =u 2m (9.8)
ttm =t2o)

and a similar relationship exists on boundary [r2). Using the contact conditions, the

boundary element equations for each domain can be combined into the single system
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K'"' Ki( 0 0 0 Gt2' 0 I Gil 0 0

Ai')' ..' "') 0 0 0 G 0 G) 0

0 s2 *2 "2 -'2 2-2 1

o 2(1) K2 K(2X2) 0 -G2 1  G 2(2 U 0 G22 0 (9.9)
o (2)(X") K (2)2 K QX

2) -G (X 1)0 _ (2X2) "3 0 G (2)2 0

(2X2 (2 2 (2 ) (2)3o 0 0 3  K23  0 G2 1  0 3

3(2) 33 3(2) t (2) 33
0 0 0 K3  K3 0 -G3  2  0 0 G 3

At this stage, the solution of (9.9) for the displacements and tractions yields values in the

Laplace transform domain and these have to be inverted to the time domain. The standard

analytic inverse Laplace transformation formula

f(x,t) = 1 Ax, (x,s)e "ds (9.10)

can not be used in this case because of the complexity of u, and t,. Thus a numerical

method using Dubner and Abate's method (Durbin, 1974) was incorporated to invert

the results.

9.3 NUMERICAL RESULTS OF BOUNDARY ELEMENT METHOD

The preceding boundary element theory will now be applied to several granular

contact problems of interest to the research program.

9.3.1. Circular Disk Contact Models

The first application of our BEM analysis was made on a two disk contact model

shown in Fig.9.2. The boundary of each disk was discretized into 16 elements with 32

nodes. Contact was modeled by forcing the conditions in relation (9.8) at a single nodal

point as shown. Two different simulations were considered. In the first case, the bottom

of the disk was fixed, while the second test the bottom was free. For both simulations the

input load was applied at the top of the disk on node 1. The time history of the input

loading was a triangular profile with duration of 60 microsecads. The amplitude of the

input loading was chosen as unity. Other parameters taken to model the material and size

used in the experiments where
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Diameter of the disk = 0.0254 m. (1.0 in)

Young's modulus E = 4.82x10' N/m2.

Poisson ratio v = 0.35. (9.11)

Mass density p = 1.2x10 3 kg/mr

Shown in Fig.9.3 is a typical numerical profile illustrating the comparison of the

input profi)e with the contact force profile between the two disks. The wave speed was

calculated in terms of the formula

c = L/At (9.12)

where L is the distance between the input and contact points, i.e. the diameter of the disk,

At is the time interval between the peaks of the input and contact profiles. It was found

that the wave speed of case one was 1004 m/s, while that of case two was 1168 m/s. The

experimentally determined wave speed was measured as 1080 m/s, and thus, the velocity

of test one was less than that of the experiment and while the value of test two was

larger. The reason for this difference in the results is of course the boundary condition.

In reality the boundary condition is neither fixed, nor free but is a compliant condition

being somewhere in between these two idealized conditions.

Because the boun..iary condition at the bottom of the second disk plays a

significant role in the load transfer process a three disk model shown in Fig.9.4 was

constructed. This model will then more accurately simulate the conditions which exist in

a large granular assembly. The wave transfer profile for the model is shown in Fig.9.5.

For this case the wave velocity was calculated as 1080 m/s, and this value was consistent

with the experimental results.

In our previous research using the elastic network method (Sadd et.al., 1992) a

required dynamic stiffness coefficient k, was determined by matching numerical results

with experiment data. In that work it was found that k,=7.04x10 6 N/m. The stiffness

coefficient k, can also be obtained through calculation. Using Hertz contact-stress theory,

it has been proposed by (Mei, 1989) that

k, = a(xrhE/4) (9.13)
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where ox = c2/(E/p) is a dynamic modification factor. Now ac"ording to our BEM analysis

using the computed wave speed, ox = 0.29, and thus, k, = 6.96xl06 N/rn, which agrees

quite closely with the experimentally determined value.

The wave attenuation is a measure of the reduction of the peak load transfer

through a granular systemi Using Fig.9.3 and Fig.9.5 this reduction relative to the

triangular unit input can easily be determined. The attenuation for the three disk case was

found to be 0.875. The average measured attenuation of single chain disk assemblies was

found to be 0.935, thus the numerical result is slightly less than that from the

experiments.

9.3.2. Elliptical Disk Models

In order to investigate the effect of granular shape on the dynamic load transfer

process, additional numerical simulations were conducted on two groups of elliptical disks

as shown in Fig.9.6. These two sets of disk assemblies have the same particle height

being equal to 1 inch. The results of these numerical runs are shown in Table 9.1 along

with the previous circular disk case of a = b = 1.0 in. The profiles of the contact forces

are shown in Fig.9.7 and 9.8.

The numerical results show that the wave velocity in these model granular

materials depends on the shape of the particles. The wave velocity is clearly dependent

on the ratio a/b of the particle, and the velocity increases with a decrease of the ratio a/b.

Within an individual disk, wave propagation is quite complicated and a given wave

profile is the result of many waves that are reflected from the disk boundaries. Also some

waves will actually be confined to move on the boundary surface of the particle. The

wave is a synthes's of all of the direct and reflected waves propagating through many

different paths within a disk. As shown in Fig.9.6, the waves starts from the input source

point, and then propagates along many different paths to the output or contact point. For

the case shown in Fig.9.6 (a) ,the waves travel slightly longer paths than in the case of

Fig.9.6 (b), thus accounting for the change in the wave speed. Table 9.2 compares the

computational results with the experimental values. The comparisons show consistent

trends with a reasouable match in the wave speeds.

9.4 FINITE ELEMENT METHOD CALCULATION

A second numerical modeling technique which was used for this dynamic contact
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simulation was the finite element method. Using a standard two-dimensional plane stress

model for an elastic continuum with damping, the finite element scheme produces an

algebraic system model of the form

:Ml{u) + [Ce{u} + [KI{u} = {F} (9.14)

where [M],[C] and IKI are the mass, damping and stiffness matrices respectively, and {F}

is external loading matrix. In this study a quadrilateral four node element, and a triangular

three node element have been employed. A consistent mass model was used to create the

mass matrix. At present, the damping matrix is ignored. A standard Newmark integration

scheme was employed to solve equation (9.14). The finite element method requires that

a two-dimensional mesh be generated, and a computer code was developed to generate

the mesh automatically. The FEM model is shown in Fig.9.9 for the case of a three disk

model.

The input load and the material and geometry of the disks are the same as the

previous BEM model. The total model includes 360 quadrilateral elements and 72

triangular elements, resulting in 433 total nodes. The time step used in the Newmark

scheme was I microsecond. The time history of the contact load of node 13 is shown in

Fig.9.10. Results from this FEM analysis indicated a wave speed of 1104 m/s while the

normalized peak amplitude attenuation was 0.82.

9.5 CONCLUSION

The boundary element method and finite element method were used to analyzed

the dynamic behavior of wave propagation in model granular systems. The numerical

results showed similarity to the experimental data in that the wave velocity in the granular

system is less than that in the particle material. Also consistent with the experimental

data, was the fact that the wave velocities were found to be dependent on the shape of

the particles in contact (see chapter 6 for the experimental studies). For elliptical disk

models, the velocity decreases with an increase in the particle dimension perpendicular

to the axis of propagation. The peak attenuation of the amplitude of the wave compared

reasonably well with experimental data.

The stiffness coefficient k, which is required in the distinct element and elastic
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network calculations, can be evaluated by these boundary and finite element methods of

analysis. Our preliminary numerically generated results for k, matched closely with the

previous values we have determined empirically.

Table 9.1 The Wave Speed and the Peak of the Amplitude of the Contact Force

a=l.5" b=l.0" a=l.0" b=].0" a=.75" b=l.0"

Velocity (m/s) 806 1004 1250
Two Disks

(fixed) Peak .802 .880 .919
Attenuation

Velocity (m/s) 915 1168 1411
Two Disks

(free) Peak .697 .831 .870
Attenuation

Velocity (m/s) 891 1080 1300

Three Disks

(free) Peak .746 .857 .893
Attenuation

Table 9.2 The Comparison of Wave Speed with Experiment

a=l.5" b=1.0" a=l.0" b=l.0" a=.75" b=1.0"

Num. Exp. Num. Exp. Num. Exp.

Wave Velocity (m/s) 891 955 1080 1080 13W() 1125
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Fig. 9.9 Mesh of finite element model
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I CHAPTER 10

INFLUENCE OF LOCAL HETEROGENEITIES ON DYNAMIC
STRESS HISTORY IN GRANULAR ASSEMBLIES

I An experimental study has been conducted to investigate the effects of local

heterogeneities like inclusions and voids on the wave propagation phenomena in granular

materials. Dynamic photoelasticity was used to study the effect of these defects on the

local stress field as the stress wave passes by. The results indicate that both inclusions and

voids produce local wave scattering through various reflection mechanisms. Inclusions

I increase the wave length and produce more local attenuation while voids can change the

energy transfer paths.

10.1 INTRODUCTION

It is well known that actual granular media contains both voids and heterogeneous

inclusions. At the boundary of these discontinuities, an incident wave will produce

reflection waves of different modes. The increased complexity of the elastic-reflection

phenomenon, due to mode conversion effects, yields scattering. This further complicates

the wave propagation phenomena in an already complex microstructural material. In a real

granular material, wave propagation phenomenon not only depends on the microstructure

but also on the existence of voids and inclusions. There exist two possible modes of

I compressibility commonly observed in granular materials, i.e. compressibility of granules

and compaction or distention of the void volume. Researchers have devoted much effort

I to the study of the scattering of elastic waves by granular media itself. Mason and

Mcskimin (1947) measured the attenuation of elastic waves propagating through

aluminum and magnesium rods. They constructed a simple first-order theory of scattering

treating the granular materials as a distribution of small spheres. The scattering was

I calculated as the sum of the scattering of individual spheres. Papadakis (1961) developed

this result to allow for variation in grain size. Hudson (1968) used the expression derived

I for the first-order displacements of scattered waves from a region where the elastic

parameters vary smoothly to study the scattering of elastic waves by granular media. A

statistical approach was made by Huntington (1950), using ray theory and by Knopoff and

Hudson (1964), using full wave theory, for media whose properties vary smoothly with
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position. Martin (1984) developed a stochastic theory for the wave propagation in a one

dimensional model of a solid with a discrete random microstructure. Two Markov

operators parameterized by the internal and macroscopic times were used in his

formulation. Nunziato showed (1977) that the effects arising from the two different modes

of compressibility and the dispersive effects resulting from the initial non-uniformity of

the volume distribution function are coupled. In general, there are two distinct types of

acceleration waves. If the effects of coupling are small, one wave propagates with a

velocity close to that determined by the elasticity of the granules. While the second wave

is associated predominately with the compaction process. However the reflection and

scattering due to the random geometry of the particle boundary represents only a

secondary effect as compared to that due to the inclusion and void of which the size is

comparable to that of the particle in the granular media. Little work has been done on the

study of the effect of inclusions and voids on the waves in granular materials, up to date.

Few experimental studies of wave scattering and reflection because of inclusions and

voids can be found in literature.

An experimental study has been conducted to study the dynamic response of

granular materials with specific interest in investigating the local effects of inclusions and

voids on the wave propagation. Local microstructure or fabric plays an important role in

the way waves propagate in granular materials, and it has been found that porosity alone

is not sufficient to characterize such dynamic behavior.

10.2 EXPERIMENTAL PROCEDURE

Experimental dynamic photomechanics has been applied to aggregate assemblies

of circular disks in an effort to simulate the behavior of real granular materials.

Inhomogeneous inclusions and specific voids were constructed within the granular

medium, and the local wave propagation phenomena associated with wave scattering was

determined. One dimensional (single chain) and two dimensional (hexagonal closed

packing) granular materials, as shown in Fig. 10.1, were simulated by assemblies of 25.4

mm diameter, 6.3 mm thick disks of Homalite-100. The inclusions were created by

replacing particular disks with ones of different material. While voids were created by

removing disks from different locations. The experimental models were placed in the

optical bench of the high speed multiple spark gap camera and dynamically loaded by
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firing a small charge of explosive PETN which was contained in a specially designed

charge holder. The camera was triggered at some prescribed delay time after igniting the

explosive. Experirniental results indicate the primary role which local microstructure plays

in determining the wave propagation behavior. Much of the results can be related to a

fabric vector called the branch vector which is drawn between adjacent disk mass centers.

Both inclusions and voids produce local wave scattering through various reflection

mechanisms, and the results seem to indicate that the inclusions produce more local

attenuation.

10.3 RESULTS AND DISCUSSION

10.3.1 Wave Propagation in One Dimensional Models with an Inclusion

a. Wave Propagation in One Dimensional Models with a Steel Inclusion

The first experiment was conducted on a one dimensional chain granular assembly

of Fig. 10.1a with a steel disk in it. Steel has much higher acoustic impedance than

Homalite-100 disk does. A sequence of four photographs obtained during wave

propagation in this model are shown in Fig. 10.2. The maximum contact loads obtained

from these photoelastic data are shown in Fig. 10.3. In this model, each disk has two

contact points. It can be seen from Fig. 10.2 that when wave reaches the steel disk, very

high contact stresses were observed. The peak load at contact 3 is about 1.8 times the

peak load at contact point 1. The wave transmitted by the steel inclusion propagated at

an enlarged wave length about four times that of the input wave. Due to the existence of

the harder inclusion, the peak contact load of the transmitted wave at contact point 4 was

reduced to 50% of the input Lo)ad at point 1. In Fig. 10.2, it was found that the fringe

pattern appeared, vanished and appeared again around the contact point 1 because of

reflection at contact point 3. It reveals that large reflection wave generated by this

inclusion propagated backward with the same wave length as the input wave. The peak

reflection wave at point 1 was as high as 60 % of the input load to this point.

b. Wave Propagation in One Dimensional Models with a PSM4 Inclusion

When the rubber type material, PSM4 (with much lower acoustic impedance than

Homalite-100) was used for the inclusion the wave propagation phenomenon was different

from the previous one. The experimental photographs are shown in Fig. 10.4. The

maximum contact loads obtained from these photoelastic data are shown in Fig. 10.5.
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Very low contact load was found at the mismatch point. Since the reflection wave

generated by this inclusion (from high impedance material to low impedance one) is in

tension, it could not propagate through contacts. Therefore, no sizable reflection was

found. The peak value of the transmitted wave at contact point 4 was only about 25% of

the input. This was half of what was observed with the steel inclusion. The transmitted

wave by this inclusion propagated with a wave length 3.6 times that of the original one.

By comparing the above two experiments it was found that both steel and PSM4

inclusions can largely change the local contact stresses and enlarge the transmitted wave

length. Steel and PSM4 inclusions introduce large wave attenuation by different

mechanisms. A steel inclusion acted as a reservoir, which made it difficult for waves to

come out of it. While a soft inclusion acted as a dumper which made it difficult for waves

to enter it. In addition, harder inclusion can generate a compressive reflection wave with

the same wave length as the input while no reflection can be found with a softer

inclusion.

10.3.2 Wave Propagation in Two Dimensional Models with Defects

For the purpose of comparison, two-dimensional experiments were conducted on

a normal HCP model (with neither inclusion nor void), and HCP models with inclusions

or voids. Fig. 10.6 shows a sequence of four photographs obtained during wave

propagation in a normal HCP model. The normalized peak contact loads obtained from

these photoelastic data are shown in Fig. 10.7. In this model, each disk has six contact

points. There were neither orientation nor packing anisotropies. The wave front was of

the same shape as a HCP microstructure. Disk L in Fig. 10.1b was named the loading

disk on which the explosive loading took place. It can be seen that most of the energy

was transferred through three chains, A, B and B', in contact with the loading disk, and

two chains C and C', in contact with the disk just under the loading disk. Particular

attention was paid to chains A and C as well as disk M to study the local effect of

inclusions and voids. The contact load profiles for disk M plotted as a function of time

are shown in Fig. 10.8. P, and P2 are the two inputs to the disk M, while P, and P5 are

the outputs. These four contact loads were found to have almost the same duration. The

average wave velocity in the vertical direction is 1070 m/s. The contact load attenuation

in chain A for the wave travelling two disks from the one adjacent to the loading disk
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was 30 %. It was 41 % in chain B for the wave travelling two disks from the one

adjacent to the loading disk and 60 % in chain C for the wave travelling two disks from

the disk after the one adjacent to the loading disk.

a. Wave Propagation in Two Dimensional Models with Inclusions

When a steel inclusion was placed in chain A for the HCP model, the wave front

as shown in Fig. 10.9 was found to have the same shape as in media without inclusion

shown in Fig. 10.6. Most of the energy was transferred through the vertical chain under

the loading disk. The high impedance inclusion enabled the energy to be transferred into

it at a faster speed. The peak load at contact point at which wave entered the steel

inclusion was much higher than the input load. As in the single chain experiments, the

high impedance inclusion acted as a wave reservoir. It made it very difficult for the

energy to flow out to the low impedance material and increased the wave length

considerably. The peak contact loads obtained from these photoelastic data, as shown in

Fig. 10.7, also show tremendous effect of this inclusion on contact load attenuation in the

vertical chain A. For this arrangement, it was 69 % for two disk diameter of travel while

it was only 30 % for the normal HCP model. Wave propagation phenomenon in chains

B and C was not effected by the existence of the inclusion. The wave attenuation was 39

% and 19 % respectively in chain B and C for two disk diameter of travel. The contact

load profiles of disk M appeared similar to that in the normal HCP model. The inclusion

seemed to have little effect on the wave velocity. It was found to be 1070 m/s in the

vertical direction of this model.

Fig. 10.10 shows a sequence of four photographs obtained during wave

propagation in a HCP model with three steel inclusions. Since inclusion did not change

the energy transfer path, wave propagation phenomena in this model were similar to that

in the HCP model with only one inclusion. However three inclusions introduced large

wave attenuation and greatly increased the wave length in the vertical chain A. The

average wave velocity in the vertical direction was 1050 m/s. The wave attenuations in

chain B and C were almost the same as that in the model with one inclusion. Because of

the considerably increased wave length, the wave attenuation in the vertical chain A could

not be calculated form the photoelastic data obtained in this experiment.
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b. Wave propagation in Two Dimensional Models with Voids

When the inclusion becomes very soft, it is expected to act as a void. Thus

experimental investi&.tion was also conducted on the HCP granular assemblies with voids
in it.

i Fig. 10.11 shows a sequence of four photographs obtained during wave

propagation in a HCP model with a void in chain A. Around the void, each disk has five

contact points. Orientation is anisotropic for the disks around the void. Disks away from

the void still have six contact points. The shape of the wave front seems to be the same

as in the former model. However, it can be seen in Fig. 10.11 that the energy transfer was

seriously disturbed by the discontinuity in this assembly due to the void. The energy flow

along the vertical chain A was completely blocked by this void. The stress wave had to

change its propagation path when it reached the void. This results in large increase of

contact loads in chain C as shown in Fig. 10.12. Most of the energy transfer occurred

j through chains B, B', C and C,' as shown in Fig. 10. l b, which were in contact with either

the loading disk or the one right under the loading disk. Larger tangential contact forces

were found in chain C and the chains beside the vertical chain A than what were in a

normal HCP model. It can be clearly seen in Fig. 10.13 where the contact load profiles

for disk M are plotted as a function of time. The void not only changed the energy flow

pattern in this model but also made it very difficult for the energy flow to come back to

the vertical chain under the void. After passing the void, wave propagation phenomena

in the two vertical chains beside chain A were similar to what were in a single chain.

Little energy was transferred to disks neighboring these two vertical chains. When the

wave reached the void, wave velocity dropped suddenly as wave could not pass through

an empty space. However, the average wave velocity in the vertical direction was not

affected by this single void. It was found to be 1080 m/s. The wave attenuation in chain

B was 41%, while it was 24 % in chain C for two disk diameter of travel.

Fig. 10.14 shows a sequence of four photographs obtained during wave

propagation in a HCP model with three voids. The wave propagation phenomena in this

model was similar to what was in a HCP model with one void. Chains B, B', C and C'

were still the main energy transfer path. It has been shown that a single void in chain A

can block the energy flow in that chain completely. So the effect of three voids on the
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vertical chain A was the same as that of one void. The average wave velocity in the

vertical direction was 1070 m/s. Wave attenuation was 43 % in chain B , and it was 26

% in chain C, for two disk diameter of travel. These are almost the same as that in a HCP

model with a single void.

10.4 SUMMARY

An experimental investigation has been conducted to study the dynamic response

of granular assemblies with inclusions and voids. The results show that both inclusions

I and voids have little effect on the wave velocity in the experimental models. An inclusion

has no sizeable effect on the wave propagation path. However, it can introduce large wave

I attenuation through reflection mechanism from the mismatch of material impedances. A

void produces wave scattering through free-surface reflectien from the empty volume. It

can change the energy !ransfer path in a granular assembly.
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CHAPTER 11

FFFECTS OF CONTACT ANGLE AND MATERIAL PROPERTY ON
WAVE PROPAGATION IN HETEROGENOUS GRANULAR MEDIA

An experimental investigation was conducted to study the effects of contact angle

and material impedance on wave propagation and dynamic load transfer in two

dimensional heterogenous granular media. The main attention was on how the stress wave

propagates from one granule to its neighboring granules made of different materials. The

inhomogeneous granular media were simulated by circular disks made of different

photoelastic materials such as, Homalite 100, PSMI, PSM4, PSM9, CR39 and

nonphotoelastic materials like steel and aluminum. The experimental method utilizes the

combination of high speed photography and dynamic photoelasticity to visualize stress

wave transmission and reflection in two dimensional chains of different materials. The

photographs thus obtained were analyzed to get the normal and tangential contact loads

at the contact points as a function of time. The results indicate that the load transfer is

not only dependent on the angle between the vectors drawn from the mass centers of the

contacting granules, but also dependent on the material impedance of the contacting

granules. An empirical load transfer model is proposed to predict the peak contact loads

in heterogenous chains. Predictions from this model are compared with the experimental

data.

11.1 INTRODUCTION

Studies of the load transfer in granular media have been previously conducted by

many researchers. (Drescher and De Josselin De Jong, 1972) simulated granular media

by using assemblies of circular disks, and then studied the static load transfer through the

assembly by means of photomechanics. (Rossmanith and Shukla, 1982) extended this idea

to the dynamic case through the use of high speed photography. Additional dynamic work

was also carried out by (Shukla and Damania, 1987), and (Shukla and Rossmanith, 1986).

Most of this previous work focussed on the wave propagation phenomenon in general

without going into details of relating specific microstructure to the associated wave

motion, Granular media transmit mechanical loadings primarily through contact

mechanisms between various grains. This is quite a complex process and depends
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inherently on the microstructural packing arrangements of the media. Recent theoretical

and experimental investigations (Nemat-Nasser and Mehrabadi, 1984 and Oda et.al., 1980)

have related microstructure to macroscopic behavior. This work points to the singnificance

of the local microstructure or fabric and that particular fabric vectors and tensors can be

used to develop theories to predict the mechanical behavior of such materials. The

concept of branch vectors in the direction of the contact normals have been proposed.

Particularly, (Nemat-Nasser and Mehrabadi, 1984) addresses this issue for the case of

dynamic load transfer by investigating the effects of the angle between branch vector on

the wave propagation through granular aggregate assembly chains. Recently, (Shukla et

al., 1988a) obtained experimentally the relation between the dynamic load transfer and

the contact angle in two dimensional chain assembly of circular disks.

The dynamic load transfer problem will be much more complicated when granules

make contact with different materials. Both transmission and reflection of the mechanical

signal are involved and not much literature exists on the theoretical analysis. This study

is thus focussed on both effects of contact angles and material impedance on wave

propagation and dynamic load transfer in heterogenous granular media.

11.2 EXPERIMENTAL AND ANALYTICAL PROCEDURE

The experimental method used in this study was the combination of dynamic

photoelasticity and high speed photography. The experimental model is shown in Fig.

11.1. The chain 1 (input chain) consists of Homalite I(X) disks and chain 2 and 3 (output

chains) consists of disks made of other materials such as steel (which has much higher

Elastic Modulus E and Density p than Homalite 1(X)), CR39 (which has similar material

properties as Homalite 100) and PSMI (which has much lower E and p than Homalite

100).

The experimental models were placed in the optical bench of a high speed

Cranz-Schardin type camera. The camera was triggered at some prescribed delay time

after igniting the explosive which is placed on the top of the model ( see Fig. 11.1 ). This

high speed photography system operated as a series of high intensity extremely short

duration pulse of light and provides twenty photoelastic images at discrete times during

the dynamic event.

The Hertz stress field equations along with the stress optic law were then used to
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calculate the contact loads. All the dynamic contact loads between two different material

disks were obtained by analyzing the Homalite-1(X) disk. The experimental results are

discussed in the following section.

11.3 RESULTS AND DISCUSSIONS

A series of experiments were conducted with the experimental arrangements shown

in Fig. 11.1. Both, the effects of the branch angles 0,, 02 and material impedance on load

transfer phenomenon were taken into account. The first group of experiments was

conducted with 01=02=45'. The left branch of disk chain was always of the same material

as input chain, i.e, Homalite 100. The material on the right branch, however was varied

from a very low impedance material, PSM4, to a very high impedance material, steel.

Here the material impedance is defined as pC, where p is the material density and C is

the longitudinal wave velocity in the material. The typical dynamic isochromatic

photographs obtained are shown in Fig. 11.2. The fringes are distributed symmetrically

around the contacts in both chains, indicating predominantly normal loading. And there

are no fringe patterns at contact points along the side supports meaning that all the energy

is channelled along the disk chains. More intense fringe patterns at the contact point of

the right branch implies that a larger contact load transfer occurred in the steel chain. This

is also clearly shown in Fig. 11.3 where the contact loads as a function of time are

plotted. From Fig. 11.3 it is found that the contact load P 3max is even larger than the input

load PIax, This can be explained by wave motion theory, the input stress of a bar can be

even doubled if the end of the bar is fixed. Another extreme case was investigated in

which rubber type material PSM4 was placed in the right branch chain, as showr in Fig.

11.4. The experimental results are shown in Fig. 11.5. This time, P3,,,m, is highly reduced

due to lower impedance of the material in that chain. On the other hand, comparing with

the previous experiment, there is little difference in the contact load at the left branch,

P 2,ax/P•,,, are 0.59, 0.61 respectively.

Other materials such as PSMI, PSM9 and CR-39 were also used and the results

are shown in Table 11.2. It is very surprising to find that even for the same branch angle

(01=02) the output contact loads P2m,, and P 1,,o. are not equal and the ratio, P3max,/P•,ax,

varies largely if different materials are present. This result quantitatively shows how the

mismatch of material impedance affects the dynamic load transfer locally at contacts in
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heterogenous granular media.

From the above experimental results and discussions, it is felt that the dynamic

load transfer is dependent on both the contact angle and the material impedance and there

should be some relation between them. On the other hand, it would be very cumbersome

to do thousands of experiments for different combinations of contact angles and material

properties to obtain this relationship. Therefore, a load transfer model is proposed here

by taking into account both the effects of contact angle and the material property.

11.4 LOAD TRANSFER MODEL

First, let us focus on the stress wave problem in a bar with discontinuous cross

section made of different materials ( Fig. 11.6 ). A disturbance at the left end of bar I

will cause an elastic compressive pulse with intensity cy to propagate to the right. At the

interface with bar 2, the wave will be partly transmitted and partly reflected. Call the

transmitted wave amolitude o, and the reflected wave amplitude a.. Then, we have the

expressions

2p 2C2 (11.1)

PICI +P2C 2

p 2C 2 - pICG

p1C1 + p2C 2  (

where p is the material density and c the wave velocity in bar.

Now let us look at the wave propagation in one dimensional chain with different

materials (Fig. 11.7). In this problem we try to predict P, by knowing P1. Experimentally

this has been done for the case of identical materials, Homalite-lX). In general we have

P, = KP1, where K = 0.97 for I" disk (11.3)

If the disk chain consists of two kinds of materials, then equation (11.3) can be simply

written as
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P., = K 2p C2  P1 (11.4)
piCi + p 2C'

Since we are mainly investigating the transmitted wave, thus reflection is not

considered here. Finally, if the angular dependence effect is also ccnsidered, we obtain

the relationships between Pm,,x, P33m,, and Pmx as

P2 = f(0 1,0 2) 2P 2C 2  P1  (11.5)
p1 C1 + P2C2

P3 = f(02,0 1) 2p 2C2  P1  (11.6)
p1C1 + p2C2

where the function f is plotted in Fig. 11.8 (Shukla et.al.,1988) and the factor K in

equation (11.3) is included in f(01 , 02) function. The equations (11.5) and (11.6) can be

used to predict peak contact loads of P2 and P3 if PI,,m is given. Fig. 11.9 shows the

comparison of experimental results and theoretical prediction for 01=02=450. It is seen

that the load transfer model has a good agreement with the experimental results.

To verify the load transfer model more experiments were done for 0,=45', 02=60'

and 01=60', 02=45'. Also, materials other than Homalite-100 were used. It is found from

Table 11.2 that even for larger angles and different materials in both left and right

branches, the predicted values match the experimental results well (maximum error is

14%).

11.5 CONCLUSIONS

The results indicate that:

(1) The dynamic load transfer from one disk to the neighboring disks not only

depends on the branch angles and the inter-relationship between the two angles, but also

depends on the relative material impedance of the two branches.

(2) For the same branch angles (0,=0,) the higher contact load occurs in the

branch where the larger material impedance exists.

(3)The load transfer model proposed can predict the peak contact loads very well.

Good agreement was found between the proposed theoretical formulation and the

experimental results. This model is a necessary first step for further study of wave
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propagation in heterogenous granular media.

Table 11.1 Material Properties

Material Elastic Modulus Poisson's Fringe Mass Wave
E(MPa) Ration Value Density Velocity

Static Dynamic t.t f0(Kjm) p (Kg/m) V"(m/s)

Homalite 100 3860 4800 0.35 23.6 1200 1050

PSM 1 2480 0.38 7.0 1160 850

PSM4 3 125 0.46 0.18 1090 250

PSM9 3310 0.37 1170 930

CR-39 1900 3120* 0.42 15.4 1180 880

Steel 210000 0.29 78(X) 2000

Aluminum 70000 0.34 2700 2200

"Static & Dynamic Calibration of a Photo Model Material CR-39", by A.B.J. Clark,
S.E.S.A Proceddings, Vol. XIV No. 1, 195-204

** Wave Velocity in One Dimensional Chain of Circular Disks obtained by authors
Other data from "Experimental Stress Analysis", Dally, J. & Riley, W.
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Table 11.2 Comparison of Experimental Results and Proposed Formula

Materials and Angles Experimetnal Results Prediction Error (%)
left branch right branch P~maxPimýx Pmdx/P, ma P /I-, .a.x/ P mi/Plmax

Homalite 1(X) PSM 1 0.65 0.49 0.60 0.53 8.3 8.2
02=45° 01=452

Homalite I(X) PSM9 0.64 0.59 0.60 0.56 6.3 5.1
0,=45' 0,=45'

Homalite I(X) CR-39 0.64 0.58 0.6f) 0.54 6.3 6.9
02=45' 01=45'2

Homalite I(X) PSM4 0.61 0.19 0.60 0.21 1.7 10.5
02=450 01=45_

Homalite 100 Steel 0.59 1.06 0.60 1.11 2.0 5.0
02=45' 0,=45'

Homalite 100 Aluminum 0.57 0.97 0.60 0.98 5.3 1.0
02=45' 01=45O

Homalite 100 Steel 0.71 0.96 0.68 0.89 4.2 7.3
02=450 01=600

Homalite 100 PSM4 0.66 0.18 0.68 0.17 3.0 5.0
02=450 01=60 _

Homalite I(X) Steel 0.56 1.14 0.48 1.26 14.3 10.5
02=600 0,=45'

Homalite 100 PSM4 0.42 0.21 0.48 0.24 14.3 14.0
02=60' 01=450
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CHAPTER 12

WAVE PROPAGATION AND DYNAMIC LOAD TRANSFER
IN LAYERED AND HETEROGENOUS GRANULAR MEDIA

12.1 INTRODUCTION

Dynamic load transfer due to explosive loading in layered and heterogenous

granular assemblies was studied using dynamic photoelasticity. The heterogenous granular

assemblies consisted of circular discs fabricated from photoelastic materials such as

Homalite 100, PSMI, PSM4, PSM9, CR-39 and nonphotoelastic materials such as steel,

rock and aluminum. The preliminary experimental results showed that the local

microstructure controls the magnitude of load transferred in any given direction. I he load

transfer depends not only on the angle between the vectors drawn from the mass center

of the contacting granules but also on the acoustic impedance of the contacting granules.

The wave dispersion and scattering produced by the mismatch of acoustic impedance in

the heterogenous assemblies resulted in much more peak contact load drop than that in

a homogenous granular medium.

12.2 RESULTS AND DISCUSSIONS

12.2.1 Wave Propagation in Layered Granular Media

Fig. 12.1 shows an experiment conducted by replacing a layer of Homalite 100

discs with steel discs in a hexagonal closed packing. The average wave velocity through

the steel layer in the vertical direction was found to be about 860 m/s which is 9.5% less

than the average wave velocity 950 m/s in the assembly of Homalite 100 discs. The peak

contact load attenuation in the main chain A or B was 73% for four disc diameter travel

(see Fig. 12.2) which is slightly larger than 70% in a pure Homalite 100 discs assembly

(Shukla and Damania, 1987). The contact loads before the steel disc layer were greatly

increased and those after the layer were greatly decreased as for the one dimensional

chain. The contact duration after the steel disc layer was also increased. It was also

noticed that the steel disc layer created a large reflection wave which resulted in a large

contact load (even greater than the transmitted contact load). Fig. 12.3 shows photoelastic

photographs when PSMI disc layer were used as the inhomogeneous layer. PSMI's

acoustic impedance (pV) is slightly less than that of tlornalite 100. It was found that the
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average wave velocity through the layer was around 840 m/s which is 11% less than the

average velocity in a homogenous granular assembly of Homalite 100 discs. The peak

contact load attenuation in the main chain was almost same as for the homogenous

arrangement. Due to the very small difference in acoustic impedance of the two materials,

Homalite 100 and PSMI, no reflection wave was noticed.

When a layer of rubber type disks made from PSM4 was placed in the HCP model

as shown in Fig. 12.4 the wave propagated through this layer with a great reduction of

amplitude and a large i1ocrease of wave length. Fig. 12.5 shows the comparison of peak

contact loads along the main chain between the normal HCP model and HCP model with

a PSM4 disk layer. The peak contact load attenuation in the main chains was as high as

90% with PSM4 disk layer. The average wave velocity in the vertical direction was also

greatly decreased by this soft layer from about 1000 m/s of the normal HCP model to

about 650 m/s. No sizable reflection wave was noticed from this inhomogeneous layer.

This can be explained by that the reflection wave would be a tension wave which can not

propagate via contact mechanism of granular materials.

Fig. 12.6 shows an experiment conducted by placing two different layers ( one

steel disk layer and one PSM4 disk layer) in HCP models. In Fig. 12.6 the PSM4 disk

layer was placed on top of the steel disk layer. It was found that the wave amplitude

attenuation in the main chains after these two layers was about 95%. When the steel disk

layer was placed on top of the PSM4 disk layer the experimental results showed same

wave attenuation after these two layers in the main chain. In addition, a large reflection

wave was generated and it propagated back with same wave length as the input. However,

there was no reflection wave when the PSM4 disk layer was placed first.

12.2.2 Wave Propagation in Heterogenous Granular Media

Fig. 12.7 shows a sequence of four photographs obtained during wave propagation

in an heterogenous HCP model. The disk material distribution is shown in Fig. 12.8. It

can be seen from Fig. 12.8 that this granular assembly consisted of different materials

such as aluminum, rock, steel, PSM4 and Homalite 100. A steel disk and a PSM4 disk

were placed in the two main energy transfer chains respectively. When wave reached the

left main chain, higher contact load was obtained due to the existence of a steel disk.

However, at the right main chain the contact load became very small due to the PSM4

191



disk.

Fig. 12.9 shows the wave propagation event in another type of heterogenous HCP

model. In this HCP model, the energy transfer occurs at three disks under the input one

(we call this a vertical HCP model, the HCP model mentioned at the above paragraph has

two disks to transfer energy under the input disk and is simply called HCP). The

maximum contact loads are shown in Fig. 12.10. In a normal vertical HCP model there

are five main energy transfer paths. However, when PSM4 and steel disks are placed in

the three main chains, as shown in Fig. 12.10, the peak contact load becomes less than

10% of the input for a four disk travel distance . If we look at the disk in the vertical

chain under the input disk, then, due to the existence of PSM4 disks, the contact loads

become only 13% of the input (for a normal vertical HCP model, it is 55% of the input).

At the left and right branches, the peak contact loads are 33% and 31% of the input. For

a normal vertical HCP model it was only 22% of the input. From these results, we see

that because it is difficult for energy to transfer through a disk with much lower acoustic

impedance, me energy transfer path changes. This results in the increase of peak contact

loads at the two branches mentioned above.

The last experiment conducted is shown in Fig. 12.11. The disks were randomly

placed with randomly distributed disk materials. In this heterogenous model, one particle

( disk ) usually has three and four, or even two contacts with other particles ( a HCP

model has six contacts). When this model is explosively loaded at one point, instead of

quasi-circular wave front observed in a homogenous HCP model, or quasi-triangular wave

front observed in a vertical HCP model, the wave front in this case is irregular as shown

in Fig. 12.11. The wave velocity in the vertical direction is reduced due to the zig-zag

packing of particles. Fig. 12.13 shows the comparison of wave velocity in the vertical

direction for different experimental models. It can be seen from Fig. 12.13 that wave

velocity in the homogenous HCP model is higher than that in a random heterogenous

model. Some of disks in this assembly were not loaded at all as shown in Fig. 12.11 and

12.12. On the other hand, some disks were loaded by reflection waves from the mismatch

contacts.There is no main energy transfer path through the particle arrangement. However,

the maximum contact loads can be traced through those disks with smaller contact angles

and less difference in acoustic impedance.
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12.3 CONCLUSIONS

The above preliminary experiments show that:

(1) When a wave propagates through a much harder layer in granular media, it

will largely increase the contact load locally before the mismatch points and decrease the

contact load after the layer. It will also generate a reflection wave with the same wave

length. Also the contact duration after the harder layer can greatly increase.

(2) When a wave propagates through a much softer layer in granular media, it will

result in decrease of the contact loads before and after the layer. The wave length will be

increased greatly and no sizable reflection will be found. When the difference in the

acoustic impedance of constituents in heterogenous granular media is small, the dynamic

load transfer phenomena is similar to that in a homogenous model.

(3) The main energy transfer path in an heterogenous granular media varies

according to the microstructural arrangement and acoustic impedance of disk materials.

However, this path can be found through lines connecting the disks with less acoustic

impedance change and smaller contact angles.
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CHAPTER 13

DYNAMIC LOAD TRANSFER IN VIRGIN AND
DAMAGED GRANULAR ROCK MEDIA

An experimental investigation was conducted to study dynamic load transfer in

granular rock media. The granular rock media was modeled as one-dimensional chain of

disks fabricated from four different types of white Vermont marble. The study focuses on

the effect of microstructure on transient pulse propagation. The transient pulse is

generated oy exploding a small amount of lead azide charge on top of the rock disk

assembly. During wave propagation dynamic contact strains are recorded using electrical

resistance strain gages. This information is used to calculate wave velocity and attenuation

as a function of the cumulative damage in *.he disk assembly.

13.1 INTRODUCTION

The response of particulate materials to impulsive loading, has been of substantial

interest to both engineers and resea-chers. The stress wave propagation in such a media,

due to explosive loading, depends primarily upon the load transfer process by which the

mechanical signals are transmitted. This phenomenon is related to the properties,

geometry as well as the microstructural arrangements of the particles in the media. As the

stress wave passes through the system rearrangement of the particles takes place. Further,

depending upon the amplitude of the stress wave, damage can occur in the particles. Thus

the transmitted wave carries along with it the information regarding the damage and the

microstructural rearrangements of the grains. The wave-propagation characteristics of the

resulting media is different as compared to that of the virgin material. Moreover, it has

been observed that for real earth materials like sand and rock, this load transfer

phenomenon is also a function of the state and history of the applied load.

This chapter presents preliminary work on the wave propagation and load transfer

in a one dimensional disk chain assembly. The disks were fabricated from four different

grades of white Vermont marble each having a different microstructure. The stress wave

is generated by exploding a small amount of lead azide on top of the disk assembly. The

dependence of the stress wave velocity and attenuation on the microstructure of the four

grades of marble rocks was studied. In general the composition of marble is

heterogeneous in nature and the microstructure comprises of preexisting voids,
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microcracks and inclusions. :, this study, particular attention was paid to the effect of

grain size and accumulated damage due to prior loading on A ave propagation. Attempt

was also made to investigate and quantify the damage that occurs in these one

dimensio~ial aggregate of disks under repeated stress wave loading. Tensile splitting tests

were performed to estimate the residual strength of the disks;. Photomicrographs were

taken at different stages of the stress wave loading process. Moreom,-r, the stress wave

velocity as well as the wave attenuation were obtained as a function of the accumulated

damage in the disk assembly.

13.2 EXPERIMENTAL PROCEDURE

A series of experiments was conducted on a single chain assembly of rock disks

to study wave propagation in the rock media as shown in Fig. 13.1. These disks were

fabricated from four different cores of Vermont marble having different microstructure

as shown in Fig. 13.2. Typical values of the Young's modulus and the Poisson's ratio for

the Vermont marble used were 41.3 and 0.23 GPa respectively. The rock disks were 31.75

mm in diameter and 13.7 mm in thickness. The assembly of disks was explosively loaded

using 15 mg of Lead Azide in a specially desgned charge holder. The resulting dynamic

load transfer phenomenon in the disks was studied using electrical resistance strain gages.

The strain gages were bonded on four separate disks in the chain at a distance of

7 mm from the contact point. The strain gages were suitably connected to the Nicolet

Oscilloscopes through the bridge amplifiers. The oscilloscopes were triggered when the

explosive was detonated. The resulting strain profile was recorded as a function of time.

The strain profile was analyzed to obtain the average stress wave velocity, peak contact

strain, duration of contact, as well as the stress wave attenuation.

To study and quantify the effect of damage induced in the rock disks due to

repeated stress wave loading the residual strength, the wave velocity and the stress wave

attenuation were obtained for the single chain of tie disk assembly. This ave' ige wave

velocity and the stress wave attenuation were plotted a" a function of the number of times

the assembly was loaded.

The residual strength of the disk was measured 1-y an indirect tensile test. In these

tests the marble disks were laid vertically on the loading plates of the Instron machine in

the compression mode. The load was slowly increased at a very slow rate until the
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specimens failed by splitting across the vertical diameter. Assuming linear condition

within the core the approximate tensile strength oy, was calculated using the equation:

2Pmax (13.1)

7T DL

where Pm, is the applied load at fracture, D is the diameter of the core and L is the

length of the core.

To estimate the residual strength of the damaged rock disks 15 mg of lead azide

was used to generate the stress wave through the assembly of disks. The tensile tests were

carried out on the first two disks taken out from the top of the assembly. Two new disks

were placed on top of the disk assembly to replace the damaged disks. The chain

assembly, this time was loaded twice, and again the top two disks were taken out and

their residual tensile strength obtained. This procedure was continued until the residual

tensile strength was obtained for the disks which had been loaded five times.

13.3 ANALYSIS

The wavelength of the stress wave generated by the explosive charge was

approximately four times the diameter of the disks as observed in these experiments. This

resulted in a quasistatic type of loading around the contact zone (Shukla and Damania,

1987). Hertz contact theory along with the strain gage data were thus used to calculate

the contact strains.

Using Hertz contact stress theory, the stress field equations at any point (x--0,z)

around the contact region of the two bodies, as shown in Fig. 2.7, are represented as:

b2 z 1

irA

X - b z( b 2  2 z2  2 ir (13.2)
r A b -b

2z
ZX b

where €, M and A are:
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(M 2 ý 2 M 2 + 2 z2 - 2 b2 )

M = FTb2 +72

A -R (1 - v2 )

E

where R is the principal radius of curvature of the body, E is the modulus, v is the

Poisson's ratio and b is the half contact length. For the two dimensional plane stress

problem the contact normal strain is given by:

E 1 a VG" (13.3)
ZZ E

Substitution of equation (13.2) in equation (13.3) results in a non-linear equation for

normal strain P, in terms of the half contact length b as shown below.

- b2 z 0 1  2 it Av(1+ -) (13.4)
ZZ E n A b 3 0 1

The normal strain is plotted as a function of the normal distance from the contact for

different values of the contact length 2b as shown in Fig. 13.3. Thus by experimentally

obtaining the normal strain at a known location (x,z) on the disk the half contact length

b as well as the contact strain can be calculated. Since the strain gage has a finite size it

averages the strain over its grid area. This average strain is not equal to the strain at the

grid geometric center. From the plot of the strain vs. distance (Fig. 13.3) it can be seen

that steep gradients in the strain exist near the contact point and the strain profiles peak

around z=1.0 mm. As the distance normal to the contact point increases the strain

gradients reduce and the strain profiles become almost flat after z=6 mm. Thus it is

important that the strain gages be placed beyond z=6 mm so as to minimize the averaging

error. Further the Hertz contact stress field is valid for a distance approximately equal to

8b from the contact point (Shukla and Damania, 1987). Typical half contact length

obtained in the experiments was 1 mm. Thus to meet the above constraints the strain gage
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must be placed at a distance of more than 6mm and less than 8mm from the contact

point. Fig. 13.4 shows the three dimensional plots of the strain profile as a function of

both x and z as the strain gage surface would experience. When the center of the strain

gage is placed at 7mm from the contact point the strain gage experiences small strain

gradients as compared to being placed 2mm and 4mm from the contact point.

To estimate the error introduced due to the finite size of the strain gages the

percentage error was calculated by considering a strain gage with a grid size (L X L)

positioned at a height z above the contact point. The percentage error is defined as:
C av

Error % -_____- X 100 (13.5)
E G

The strain ,c at the geometric center of the strain gage is calculated from equation

(13.3). The strain gage area is discretized into a grid containing (100 X 100) nodes and

the strain at each node is calculated. From this the average strain is obtained. The results

are presented in Fig. 13.5, which shows the error due to the averaging effect as a

function of the gage grid length, L. The results are plotted for different heights, z above

the contact points. The error is higher for strain gages closer to the contact points because

of the steep strain gradients. Also the error increases as the strain gage size increases. For

the size (2mm X 2mm) and the location of the strain gage used in this study the error is

about 2 %.

13.4 RESULTS AND DISCUSSIONS

13.4.1 Wave Propagation in Virgin Rock Disk Assembly

A series of experiments was conducted with strain gages mounted 7mm from the

contact point of the disks. Strain versus time plots at the location of the strain gages were

recorded. A typical strain gage output profile is shown in Fig. 13.6. Position of the

wavefront versus time plots were obtained for marble A, marble C, and marble D disk

assemblies. Typical plot is shown in Fig. 13.7. The position of the wavefront was

obtained from the strain peaks in the recorded strain profile. The peak in the strain

profiles, being clearly defined, were given preference over the arrival times of the waves

in the calculation of the wave velocity. Also, the strain profiles being symmetric, the

choice of the peak strain avoided any significant error due to the spreading of the strain
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profiles due to the material and the geometric dispersion. The stress wave velocity was

obtained by drawing a best fit line through the experimental points. The results indicate

that a correlation exists between the stress wave velocity and the grain size. It is observed

that the average wave velocity is higher for rocks with larger grain size. The average

grain size of marble A was the smallest and the stress wave velocity was 1210 m/sec. The

grain size of marble C was higher and the corresponding stress wave velocity obtained

was 1425 m/sec while marble D had the largest average grain size and a stress wave

velocity of 1525 m/sec. This trend is to be expected as the stress wave encounters a fewer

number of grain boundaries or obstacles as it propagates through the granular rock

material having a larger grain size.

To study the stress wave attenuation in different grades of marble the normalized

peak strain was plotted against the stress wave propagation distance as shown in Fig.

13.8. The contact stress was normalized with respect to the stress at the contact between

the disks 2 and 3. At the contact point the contact strain increases from zero to a peak

value and then gradually decreases towards zero. Some oscillations are seen in the strain

profile due to the reflection of waves from the boundaries. A typical duration of the

contact was 85 pts. Due to the cumulative effect of the internal losses within the disk,

energy spent in closing the contacts, and the reflection effects from the boundaries of the

disk the stress wave attenuates rapidly in the first two disks and then gradually as the

distance from the explosive loading increases. Again the disk with the smallest grain size

shows the steepest drop in contact strain. Marble A shows 50 % drop in its peak strain

value as the wave travels through the first two disks. Marble C and Marble D show about

37 % drop in its peak value for the same distance of travel. After this the attenuation in

all the three grades of marble is similar and the peak strain drops to 35 % of its initial

value as the wave propagates through nine disk diameters.

13.4.2 Wave Propagation in Damaged Rock Disk Assembly

To quantify the damage occurring in the rock disks during wave-propagation,

tensile splitting tests were carried out to obtain the residual tensile strength. The residual

strength of the first two disks was studied as most of the attenuation in the stress wave

occurs in these disks. Table I lists the residual tensile strength of the first two disks as

a function of the number of stress wave loadings. It was observed that after the passage
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of the first stress wave the residual strength of the first disk falls down to 63 % of its

value in the virgin state (1125 N/m 2). Additional drop of 8 % in the tensile strength

occurs after the second loading wave. As the number of stress wave loadings is increased

further the residual tensile strength reaches a limiting value of around 6(X) N/m 2 (51 %)

before the disk fractures.

The tensile strength of the second disk drops down by only 17 % after the first

two stress waves. This happens because the cumulative damage occurring in the second

disk is relatively small as compared to the first disk as the peak strain value attenuates

by almost 40 % by the time the stress wave propagates through the first disk. As the

number of shock wave loadings is increased further, the residual strength remains fairly

constant until the fourth loading wave after which the tensile strength falls to 60% of the

tensile strength value in the virgin state.

The average stress wave velocity in the disk assembly was plotted as function of

repeated stress wave loading as shown in Fig. 13.9. The velocity increases from 1080

m/sec in the virgin state to 1400 m/sec after the passage of the first stress wave. As the

number of stress wave loadings is increased further the wave velocity undulates about the

terminal velocity of 1450 rn/sec and eventually falls off as the cumulative damage

increases in the disks. The increase in wave velocity, after the first stress wave, is

partially due to the fact that as the contacts are established the disks come closer to each

other resulting in increased stiffness of the assembly. At the same time as the wave

propagates it closes the preexisting voids and microcracks in the disks resulting in a

further increase of velocity. As the number of stress wave loadings is increased the

cumulative damage in the disks increases resulting in an increase in the number of

microcracks. These microcracks impede the progress of the stress waves as it has to travel

around these cracks.

The normalized contact strain for the contact point 7-8 under repeated stress wave

loading is shown in Fig. :3.10. The contact strain is normalized with respect to the

strain obtained at the contact 7-8 after the first stress wave loading. The peak contact

strain at contact 7--8 was used as an indicator of the accumulation of the damage in the

first seven disks of the assembly under repeated loading. From the plot it can be seen that

like in the case of the velocity the contact strain first increases, reaches a terminal level
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and then falls off as the damage accumulates in the disks.

As the number of stress wave loadings is increased damage occurs around the

contact zone due to high contact stresses and large scale crumbling and pitting is observed

near the contact zone. Away from the contact point the grains simply separate along the

grain boundaries. Rock grains are made up of crystals having dissimilar orientations and

thus having different rates of stress wave propagation. This causes differential stresses to

develop along the grain boundaries which tend to pull the grains apart. Fig. 13.11 shows

the photomicrographs of the area near the contact zone of the disks after the passage of

the first two stress waves. Close examination of the fracture surface also shows fractures

which radiate from the contact area. These are caused by the hoop stresses which develop

at the front of the divergent stress wave. Spalling is noticed near the lower contact area

of the disk. This is caused by the interference of the tail portion of the compressional

wave and the front of the same wave which was transformed, on reflection at the free

surface into a tension wave. Rocks being strong in compression but weak in tension are

particularly prone to spalling.Under repeated loading the microcracks formed due to the

grain boundary weakening, radial microfracture and those formed due to spalling combine

together to create open cracks on the disk surface as shown in the photomicrograph in

Fig. 13.12. The microcracks and the surface crack impede the propagation of the stress

wave and lower the stiffness of the disk assembly resulting in the attenuation of the stress

waves and reduction of the stress wave velocity.

13.5 CONCLUSIONS

A dynamic strain gage technique was employed to study wave propagation and

dynamic load transfer in granular rock media. The rock media was modeled as a one

dimensional array of circular disks fabricated from different grades of Vermont marbles

having different microstructure. The dynamic data was analyzed to obtain the average

wave velocity, stress wave attenuation for both virgin as well as damaged rock media.

The residual strength of the disks was estimated after the passage of the stress wave

using an indirect tensile test. The damage in the disks was studied by taking optical

micrographs of the disk surface. The results indicate that:

1. A correlation exists between the microstructure of the rock material and the

stress wave velocity. Larger the grain size of the rock media higher is the stress wave
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velocity. For the different grades of marble studied, the wave velocity corresponding to

the largest and the smallest grain sizes was 1525 nVsec and 1210 m/sec respectively.

2. Rapid attenuation in the peak contact strains, and thus the amplitude of the

stress wave, takes place as the wave propagates through the first three disk diameters.

Moreover, it is observed that this rate of decay increases as the grain size of the marble

decreases. However, as we move further away from the point of loading all the three

grades of marble approach the same rate of attenuation.

3. The stress wave velocity increases sharply by almost 30% after the passage of

the first stress wave. Upon repeated explosive loading the stress wave velocity approaches

a terminal velocity of 1450 m/sec and eventually falls off as the disk fails by fracturing

across the surface.

4. The residual tensile strength of the disk decreases as the number of stress wave

loadings was increased. Further, a limiting residual strength value exists which remains

fairly constant upon repeated loading until the disk fractures.
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Table 13.1 Residual strength as a function of number of stress wave loading

NUMBER OF STRESS RESIDUAL RESIDUAL
WAVES THROUGH THE STRENGTH STRENGTH

DISK ASSEMBLY N/rn2  N/m 2

15mg lead azide DISK 1 DISK 2

VIRGIN 1125 1185
1 710 1160
2 640 980

3 610 1040
4 FRACTURED 830
5 FRACTURED 690
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CHAPTER 14

WAVE PROPAGATION IN SATURATED GRANULAR MEDIA

An experimental investigation was conducted using dynamic photoelasticity and

high speed photography to study stress wave propagation and dynamic load transfer in

fluid-saturated granular media. The stress wave was generated by detonating a small

amount of explosive. The granular media was simulated by circular disks fabricated from

Homalite 100. In order to compare the effects of fluid viscosity on wave propagation,

different fluids such as water, Dow Coming 200 fluids with viscosity 10 cs and 100 cs,

were used in this study.

14.1 INTRODUCTION

Wave propagation in a discontinuous media has been of interest to the soil and

rock mechanics community. The propagation of elastic wave in the earth's crust is most

intimately related to the properties of sand, soil and rocks. The elastic properties of these

substances are greatly affected by the amount of water contained in them, packing

density, porosity, the size of the particles that form the substances and the binding

material which they contain. The equations governing the interaction of the solid and fluid

media were first established for quasi-static phenomena by Biot (1941) who extended

them to the dynamical case (1962a and 1962b). Then many researchers have done a lot

of work on this topic, for example, Sandhu (1968), Prevost (1982).

Current interest in geomechanics is focused on transient phenomena occurring in

earthquakes, wave loading and consolidation. For all of these the coupling between the

deformation of the 'solid skeleton' of the soil or rock and the motion of the pore fluid is

of primary importance. Shukla and Prakash (1990) experimentally investigated wave

propagation in fluid-saturated and unsaturated porous media. Ross, et.al. (1989) conducted

experiments to determine the effects of particle size, moisture content and peak magnitude

on the transmissibility of pressure waves in a granular or soil medium.

However, little attention has been paid to the effect of viscosity of the fluid which

saturates the granular media. As a matter of fact, the soil or rock media can be saturated

by pure water or crude oil which has different viscosity from each other. This viscosity

is believed to affect the shear force transfer between particles. Thus it is proposed not
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only to investigate the wave propagation in saturated granular media, but also to study the

effects of viscosity of pore fluids.

14.2 EXPERIMENTAL PROCEDURE

Experimental models for one and two dimensional arrangements are shown in

Figs. 14.1 and 14.2. The fluids were contained in a leak-proof box made from plexiglass

sheets. The circular disks were then placed inside the fluids with desired packing

geometry. The fluids used in this investigation were water, DOW CORNING 200 fluid

10 cs, DOW CORNING 200 fluid 100 cs. The later two kinds of fluids have ten and one

hundred times the viscosity of water, respectively.

The wave propagation phenomena due to explosive loading was studied using the

technique of dynamic photoelasticity and high speed photography. This technique has

been mentioned before and will not be discussed here. The high speed photographic

system operates as a series of high intensity extremely short duration pulses of light and

provides 20 photoelastic images at discrete times during the dynamic event. These

photographs of the wave propagation process at different stages of development provided

the necessary data to obtain the velocity and attenuation of the stress wave.

The sequence of 20 photographs obtained from the high speed camera were

analyzed to obtain the wave velocity and the stress wave attenuation in granular media

saturated with different fluids. The wave velocity was obtained by plotting the

instantaneous position of the wave front with respect to time. The slope of this line gave

the average wave velocity. The contact load between two disks was obtained by analyzing

the fringe patterns around the contact. The effect of fluids on the fringe pattern

appearance is negligible since the fluid layer on the disk surface is very thin.

14.3 Results and Discussions

The first series of experiments was conducted in a one dimensional disk assembly.

Fig. 14.3 shows the isochromatic fringes obtained in a single chain granular arrangement

saturated with water. The wave front as a function of time is plotted in Fig. 14.4. The

slope of the line in Fig. 14.4 gives the average wave velocity about 965 m/s which is

little bit lower than the wave velocity of 1050 m/s in the same arrangement without

saturation. This small reduction of wave velocity can be explained that between the disks

there exists a small layer of fluid through which the wave motion takes more time. The
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contact load as a function of time is plotted in Fig. 14.5. It can be seen from Fig. 14.5

that the contact load profiles have similar shape as those obtained in a single chain disk

assembly without saturation. The amplitude attenuation for four disk distance (127 mm)

is about 24% ( see Table 14.2). However, it is only around 14% drop of wave amplitude

when there is no saturation. This higher drop in wave amplitude is because some of the

energy was transferred to the fluid surrounding the disks, especially at the contact.

Fig. 14.6 and 14.7 show the wave propagation in a single chain disk assembly

saturated with Dow Corning 200 Fluids with 10cs and 100cs. The wave velocities listed

in Table 14.1 are 950 and 940 m/s respectively. The amplitude attenuation are plotted in

Fig. 14.8. It seems there is not much difference for wave amplitude attenuation in a single

chain disk assembly when saturated with different fluids. However, it does show more

attenuation in saturated granular media than that in an unsaturated one.

Fig. 14.9, 14.10 and 14.11 show wave propagation in a hexagonal closed packing

granular media saturated with water and Dow Coming 200 Fluids with 10cs and 100cs

respectively. The wave velocities listed in Table 14.1 are almost the same compared to

the results from 1-D experiments. However, unlike I-D experimental results, the contact

load attenuation in the main chain for saturated granular media is less than that for

unsaturated media. It can be seen from the photographs in Fig. 14.9, 14.10 and 14.11 that

most energy transfer occurred in the two main chains. However, for unsaturated HCP

model as shown in Fig. 14.12 the energy transfer not only occurred in the main chains,

but also in the neivhboring disks next to the main chain. Since there is a thin layer of

fluids in a saturated granular media it is more difficult for the wave to propagate from the

main chain disks to the disks with contact angle other than zero degree ( In the main

chain all the disks have contact angle 00). That is why for 2-D problems, the contact load

attenuation in the main chain for saturated granular media is less than that in unsaturated

one.

14.4 CONCLUSIONS

(1). Wave propagation velocity in granular media decreases by about 5-10% when

saturated with fluids.

(2). Wave amplitude in 1-D granular assemblies show 25% higher attenuation

when saturated with fluids.
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I (3). In two-dimensional HCP model, due to saturation, wave mainly propagates

through two main chains. Thus, less amplitude attenuation is found compared to the

results of unsaturated granular media.

(4). No conclusive information is obtained about the effect of viscosity of the

saturating fluids on wave propagation phenomena in granular media.

TABLE 14.1

Wave Velocity (m/s)

Saturated with air water Dow Coming 200 Dow Qin•ig 200
fluids (10 cs) fluids (100 cs)

1-D 1050 965 950 940
2-D 1010 960 950 900

TABLE 14.2

Contact Load Attenuation
for 4 Disk Distance (127 mm)I

Saturated with air water Dow Coming 200 Dow Qbining 200
Sfluids (10 cs) fluids (100 cs)

I-D 18% 24% 25% 23%
2-D 70% 62% 52% 53%
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CHAPTER 15

CONTINUUM MODELS FOR MATERIALS
WITH LATTICELIKE MICROSTRUCTURE

Within the framework of the finite element method, a general technique is

presented to compute the continuum constitutive matrix of an equivalent latticelike

microstructural material. The equivalency between the continuum and microstructural

stiffness matrices produces an over-determined system which is solved using the Moore-

Penrose generalized inverse procedure. Although the resulting solution is not exact, it is

unique in the least-squares sense. The present study is limited to two-dimensional

problems; howevever, the technique can easily be extended to three-dimensions. Several

specific examples are given to demonstrate the effectiveness and accuracy of the method.

15.1 INTRODUCTION

The mechanical behavior of materials composed of granular and/or fiberous

microstructures, is inherently involved with the transmission of loadings along discrete

paths within the material. This behavior is fundamentally different from that predicted

by classical theories of continuum mechanics. It has been observed, see for example Oda,

Konishi and Nemat Nasser (1982), that the particular distribution of internal load transfer

depends strongly on the material's microstructure. A considerable amount of

contemporary research has been conducted in order to understand and explain this

complex microstructural behavior. Burt and Dougill (1977) proposed a simple planar pin-

jointed truss network to simulate the stress-strain behavior of heterogeneous materials.

Based on the fact that granular materials transmit loads only through contact mechanisms,

they have been modeled with network theories, e.g. Trollope and Burman (1980), Bagster

and Kirk (1985), Bideau et.al. (1986), Thornton and Barnes (1986), and Sadd, Qiu and

Boardman (1992). The connection between various lattice gridworks and an equivalent

micropolar continuum has been investigated by Banks and Sokolowski (1968), Bazant and

Christensen (1972) and Sun and Yang (1975). The relationship between the

micromechanics and the overall macro material behavior is a very important and

fundamental issue in current materials research. For example, this relationship is needed

to understand how localized microstrutural failure will lead to global failure of the entire
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body, and to predict the effective global properties of a material knowing its

microstructure. An example of a microstructural model for a granular material is shown

in Figure 15.1. The ,dious contact interactions in the actual material (Figure 15.1a) are

modeled using elastic bar elements as shown in the equivalent microstructural system in

Figure 15. lb. Other more complex microstructural systems can be constructed to simulate

micromechanical behavior.

In addition to this type of research, there has also been considerable interest by

the structural mechanics community in the continuum modeling of large repetitive lattice

structures. The relationship between a continuum and a gridwork of discrete elements

was first examined in some early work (Hrennikoff, 1941, Newmark, 1949) which

involved analyzing a continuum by replacing it with an equivalent elastic gridwork. More
recently the inverse problem of continuum modelling of repetitive latticelike structures

has received considerable attention (Noor et.al., 1978, Kollar and Hegedus, 1985, Renton,

1984, Dow et.al., 1985, Noor and Russell, 1986), and this work has been reviewed by

Noor (1988). The ability to replace a large repetitive gridwork with an equivalent

continuum provides a means to simplify certain calculations for large space structures.

Based on finite element procedures, several methods of computing the properties of an

equivalent continuum have been developed. The majority of these methods were

developed for beamlike and platelike lattices, where a reduction in dimensionality was an

integral part of the equivalency problem.

Current methods of establishing the equivalency between structural and continuum

models have been primarily based on stiffness or energy methods (Noor, 1988). These

techniques have proposed continuum finite elements with stiffness (constitutive) and strain

and/or kinetic energy properties that approximate to some degree of accuracy, the

structural system. The present state of research indicates that while satisfactory equivalent

Scontinuum models for linear behavior of beamlike and platelike lattices can be developed,

methods for general continua still need further refinement and study.

The current article addresses this general problem of developing continuum models

for materials with latticelike microstructure. The main objective is to construct a

somewhat general technique to compute the constitutive matrix of an equivalent

continuum given the microstructural properties. The study is limited to two-dimensional
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plane problems; however, the technique can easily be extended to three dimensions. After

envoking equivalency between the continuum and microstructural stiffness matrices, the

resulting over-determined system is solved using the Moore-Penrose generalized inverse

procedure. This provides a unique solution in the least-squares sense. Several specific

examples are then presented to demonstrate the effectiveness and accuracy of the method.

15.2 FORMULATION OF EQUIVALENT CINTINUUM PROPERTIES

In the method presented here it is assumed that the stiffness matrix of a repeating

element of the latticelike microstructure is known. This stiffness matrix may be computed

by utilizing the direct stiffness method to assemble each of the discrete element stiffness

matrices in the repeating element into a global stiffness matrix. For the type of problems

under consideration here the repeating element of the latticelike structure and the elemtnt

of the equivalent continuum are to have the same degrees of freedom. Therefore, the two

elements will exhibit identical behavior if their stiffness matrices are identical. Thus, the

stiffness matrix of the element of the equivalent continuum is required to satisfy the

equation

1KI, = [KI, (15.1)

where [KI, and [KIC are, respectively, the stiffness matrices of the microstructural cell and

the equivalent continuum.

Using standard procedures from finite element analysis, the continuum stiffness matrix

can be written as

IK]. = fa IB]I [DlBI d&2, (15.2)

where [BI is strain-displacement matrix, [DI is the constitutive matrix containing the

material moduli, i.e. {(1}=[DI{}, and Q is the element domain. Utilizing Gaussian

quadrature to evaluate the integral in equation (15.2), the equivalency equation (15.1) can

be rewritten as

1KI] = Y-ij tjjaj[ BITijjIDI[IBI]jlJij (15.3)
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where tij, aij, and JJ~j[ are, respectively, the thickness, the weighting factor, and the

determinant of the Jacobian, all evaluated at the integration point r,, sj. The values of the

weighting factors and the location of the integration points (which are specified in natural

coordinates r and s) are determined by the order of Gaussian quadrature chosen (Bathe,

1982). The values of the strain-displacement matrix and the Jacobian matrix are

determined by the continuum finite element selected to model the equivalent continuum.

Thus, once the interpolation scheme has been chosen, the value of [D] is the only

unknown in equation (15.3). Therefore, equation (15.3) can be used to solve for the

constitutive matrix [D] of the equivalent continuum.

At this point it should be noted that equation (15.3) is only valid for a homogeneous

equivalent continuum, i.e. the value of [DI is assumed to be the same at each sampling

point in the continuum element. It should also be noted that it has been implicitly

assumed that a strain energy function exists for the equivalent continuum, which implies

that [D] = [D]-. Therefore, it is only necessary to solve for the upper diagonal terms of

the constitutive matrix.

Evaluating the right-hand-side of equation (15.3), and rewriting the resulting equation

in the standard form utilized for systems of simultaneous equations, we have

[AI{D} = {K} (15.4)

where {D} is a vector containing the unknown upper diagonal terms of matrix [D], {K}

is a vector containing the known terms of the matrix [K]t, and [A] is a known non-square

coefficient matrix determined by evaluating the right-hand-side of equation (15.3).

Equation (15.4) represents an M2 by N system of simultaneous equations, where M is the

number of degrees of freedom in the equivalent continuum element, and N is the number

of unknowns. Since {D} contains at most 21 unknowns, it is apparent that equation (15.4)

is severely over-determined. For example, a plane stress problem which utilizes an

equivalent continuum element with eight degrees of freedom would have sixty-four

equations and six unknowns. Due to the fact that equation (15.4) is over-determined,

standard solution procedures such as Gauss elimination are not applicable, and thus it is

not possible to determine an exact solution. Therefore, a residual error vector defined by
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S{R} = {K}-[AI{D}, (15.5)

I has, in general, entries which are not equal to zero. Since it is not possible to make all

of the entries in the residual error vector equal to zero, a solution is sought which

minimizes the size of this error vector. The approach utilized in this work is to determine

a solution which minimizes the sum of the squares of the entries in the residual error

vector. It is well known that a solution to such a linear least squares problem yields a

residual error vector which is orthogonal to the column space of [Al; see, for example,

Stewart (1973). Thus, the residual error vector satisfies the equation

I[A] T{R} = {0}. (15.6)

I Substituting equation (15.5) into equation (15.6) yields the equation

[A]r[AI{D} = [A I T {K} (15.7)

where the coefficient matrix ([AIT[A]) is now a square matrix. Since the coefficient

matrix in equation (15.7) is a non-singular square matrix, provided [A] has linearly

independent columns, the solution for {D} can be obtained by simply inverting the

coefficient matrix. Thus, the solution for {D} can be written as

{D} = (IAITIAI)-[AJIT {K} (15.8)

where the matrix (QAIT[AI)[IAIT is known as the Moore-Penrose generalized inverse

(Stewart, 1973). As mentioned previously, the solution represented by equation (15.8)

is not an exact solution. However, provided that [A] has linearly independent columns,

it is a unique solution in the least-squares sense.

15.3 EXAMPLES AND DISCUSSION

The method presented in the previous section was utilized, with a bi-linear

interpolation scheme and 2 by 2 Gaussian quadrature, to compute equivalent continuum

properties for the various repeating cells shown in Figure 15.2. For the sake of
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simplicity, two-dimensional examples were chosen to illustrate the effectiveness of the

method under consideration; however, it should be noted that this method can also be

applied to three-dimensional latticelike structures by simply selecting a different

interpolation scheme and a different order of Gaussian quadrature. Equivalent continuum

properties for the repeating cells shown in Figures 15.2a and 15.2b were also computed

by an alternate method. This alternate method involves relating the force and deformation

characteristics of a small segment of the grid to those of a small segment of the

equivalent continuum as each is subjected to a homogeneous deformation (Kollar and

Hegedus, 1985). The derivation of this alternate method relies heavily on the definition
of a homogeneous deformnation, i.e. lines which are parallel and straight before

deformation remain parallel and straight after deformation. Thus, in analyses where a

more general state of deformation must be considered this alternate method may not yield

accurate results.

The computed equivalent continuum properties are shown in Table 15.1. The

equivalent properties are the upper diagonal terms of the constitutive matrix [D]. It

should be noted that the properties of the coi.tinuum can easily be expressed in terms of

it's elastic constants once the constitutive matrix is known, e.g. the shear modulus isI given by G12=D3 3. This alternate representation of the equivalent continuum properties

might be desirable for certain anlayses, e.g. computation of the wave speed for dynamics

I problems.

Table 15.1 also contains a measure of the accuracy of the computed equivalent

I continuum properties. The error measure was computed by subjecting both the repeating

cell and the equivalent continuum element to the nonhomogeneous deformation state

shown schematically in Figure 15.3 and then computing the percent difference in the

stored strain energy. The displacement vector specified by the selected nonhomogeneous

deformation state contains only non-zero terms. Thus, each term in the stiffness matrices

will be involved in the strain energy computation. This avoids the possibility ofI inadvertently accounting for the accurate terms and neglecting the inaccurate terms, or

vice versa. It should be noted that the error measure listed in Table 15.1 is not a function

of the magnitude of the chosen displacement vector; however, it is a function of the

direction of the displacement vector. Thus, since the error in stored strain encrgy is a
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function of the shape of the chosen deformation state, the same deformation state was

utilized for each of the examples examined in this work.

The repeating cells shown in Figure 15.2 are composed of truss elements, i.e. discrete

one-dimensional elements which have a single extensional degree of freedom at each

node. The stiffness of each truss element is determined by the specified modulus of

elasticity, cross-sectional area, and length. Since the length of each element is determined

by the configuration of the repeating cell, only two parameters are required to specify the

stiffness of each truss element. The truss elements utilized in the repeating cells shown

in Figure 15.2 were assigned a modulus of elasticity of 30x106 psi. The truss elements

utilized in Figures 15.2a and 15.2b were assigned a cross-sectional 'rea equal to either

A, or A 2, where A, = 0.75 in2 and A2 = 0.53 in2 (See Figure 15.2). Each of the truss

elements utilized in the repeating cell of Figure 15.2c was assigned a cross-sectional area

equal to 0.75 in2.

The square lattice with diagonals shown in Figure 15.2a was chosen as an example

because it's equivalent continuum properties have been discussed by other researchers

(Hrennikoff, 1941, Kollar and Hegedus, 1985). Thus, the accuracy of the method under

consideration can be compared to the accuracy of a well known alternate method. By

examining the results computed for case 1-1 (see Table 15.1) it is seen that the

constitutive matrix computed by the alternative method is that of an isotropic material,

i.e. D, 3 = D23 = 0.0, D11 = D22, and D,, = D12 + 2D 33. This is due to the fact that the

alternate method predicts isotropic equivalent continuum properties for the repeating cell

shown in Figure 15.2a if the cross-sectional areas A, and A2 are chosen to satisfy the

relationship A2/A, = 1/N2. The results computed for case 1-1 also show that the alternate

method predicts that D, 2 = D33; in fact, the alternate method predicts this result for all

repeating cells, regardless of the cross-sectional areas chosen. The results computed for

case 1-1 also indicate that the equivalent continuum properties computed by the alternate

method result in strain energy values which are considerably different than the values

computed for the repeating cell. By examining the results computed for case 1-2 it is

seen that the present method offers some major advantages over the alternate method.

For example, the method under consideration removes the restriction D, 2 = D 33, and it also

results in strain energy values which are considerably more accurate than the values
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I computed with the alternate method. Also, for case 1-2 the present method yields a

constitutive matrix for the equivalent continuum which is, like the repeating cell itself,

invariant to a 90, 180, or 270 degree rotation, but not invariant to all rotations. That type

of orthotropic material behavior seems to be more reasonable than the isotropic behavior

predicted by the alternate method.

The example shown in Figure 15.2b was chosen to determine the effect of a change

in cell size on the equivalent continuum properties. By examining the results computed

for cases 1-3 and 1-4 it is seen that the equivalent continuum properties computed by both

the present method and the alternate method are inversely proportional to the size of the

repeating cell.

By examining the results computed for case 1-5 (Figure 15.2c), it is seen that the

present method yields accurate results regardless of the complexity of the repeating cell.

The results computed for case 1-5 may also be interpreted as showing that the repeating

cell of Figure 15.2c more closely approximates a continuum than the repeating cells

shown in Figures 15.2a and 15.2b.

The examples shown in Figure 15.2 were used to determine how closely the behavior

of one element of the equivalent continuum could approximate that of one repeating cell

of a latticelike microstructure. The examples of Figure 15.4 were chosen to determine

how closely the behavior of a patch of elements of the equivalent continuum

approximates that of a larger segment of the latticelike structure. The basic repeating cell

utilized in each of the examples shown in Figure 15.4 is the same cell which was given

in Figure 15.2a; thus, the equivalent continuum properties computed for case 1-2 in Table

15.1 can be utilized in each of the examples shown in Figure 15.4. Table 15.2 shows the

percent difference in stored strain energy between the patches of repeating cells and the

continuum element models, when each is subjected to the nonhomogeneous deformation

state shown in Figure 15.3.

The lattice shown in Figure 15.4a consists of four repeating cells of the type

examined in Figure 15.2a. The equivalent continuum model utilized to approximate the

behavior of the lattice consists of four continuum elements. As listed for case 2-1 in

Table 15.2 the percent difference in stored strain energy computed for the lattice and the

patch of continuum elements is 9.0 %. This seems to indicate that the equivalent
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continuum model of an entire latticelike structure would be nearly as accurate as the

equivalent continuum model of a single repeating cell.

The lattice shown in Figure 15.4b also consists of four repeating cells of the type

shown in Figure 15.2a. The equivalent continuum model utilized to approximate the

behavior of this lattice consists of one continuum element. As listed for case 2-2 in Table

15.2 the percent difference in stored strain energy for this case is 9.2 %. The results of

this example seem to indicate that an entire latticelike structure could be modelled by a

relatively small number of continuum elements, with a degree of accuracy that is largely

determined by the accuracy of the equivalent continuum properties utilized. Thus, this

example illustrates the benefit of the formulation presented in the previous section, as well

as the power of equivalent continuum modelling.

15.4 CONCLUSIONS

The results presented in Table 15.1 indicate that the method under consideration

yields equivalent continuum properties which are a good approximation to a

microstructural repeating cell, e.g. the mean error computed for the repeating cells shown

in Figure 15.2 is 3%. The results presented for the repeating cells in Figures 15.2a and

15.2b seem to indicate that for cases which involve nonhomogeneous deformation states

the method presented here is significantly more accurate than the previous alternate

method examined. The results presented in Table 15.2 seem to indicate that by utilizing

the present method to compute the equivalent continuum properties of a repeating cell,

an entire latticelike microstructure could be modelled with a reasonable degree of

accuracy by using a relatively small number of continuum elements.
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TABLE 15.1. Equivalent continuum properties computed for the repeating cells shown in Figure 15.2.

EQUIVALENT CONTINUUM PROPERTIES(/E) 3  % ERROR
CASE FIG METHOD IN STRAIN

D D12  D13 D,, D1,3 D33 ENERGY

1-1 15.2a KM' 1.125 0.375 0.0 1.125 0.0 0.375 35.4

1-2 15.2a PM2  2.089 0.375 0.0 2.089 0.0 0.482 7.1

1-3 15.2b KM 0.563 0.188 0.0 0.563 0.0 0.188 35.4

1-4 15.2b PM 1.045 0.188 0.0 1.045 0.0 0.241 7.1

1-5 15.2c PM 3.373 1.541 0.0 3.373 0.0 1.385 1.7

'Equivalent continuum properties computed by assuming a homogeneous deformation state, see Kollar and
Hegedus (1985).

2Equivalent continuum properties computed by method described in this work.

3Equivalent continuum properties were normalized by dividing them by the modulus of elasticity utilized
for the discrete members in the repeating cell.

TABLE 15.2 Computed difference in stored strain energy between a patch of repeating cells and the
equivalent continuum models shown in Figure 15.4.

EQUIVALENT CONTINUUM PROPERTIES(/E) UTILIZED' % ERROR

CASE FIG IN STRAIN
DI, D1 2 D1 3 D22 D,3 D33 ENERGY

2-1 15.4a 2.089 0.375 0.0 2.089 0.0 0.482 9.0

2-2 15.4b 2.089 0.375 0.0 2.089 0.0 0.482 9.2

'Equivalent continuum properties were normalized by dividing them by the modulus of elasticity utilized
for the discrete members in the repeating cell.
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Fig. 15.3 Non-homogeneous deformation state Fig. 15.4 Patches of repeating cells and their

utilized, dotted configuration equivalent continuum models

indicates initial state.

235



CHAPTER 16

WAVE MOTION IN LARGE RANDOM ASSEMBLIES
WITH VARIOUS ANISOTROPY

In order to investigate the effects of granular anisotropy on wave motion in

particulate materials, theoretical distinct element studies were conducted on large random

assemblies. These particular assemblies were specially generated so as to represent media

with various degrees of granular anisotropy. Such anisotropy was measured using the

fabric variable of the distribution of the local branch vectors which connect neighboring

mass centers of particles in contact. The constructed assemblies were designed so as to

produce varying amounts of anisotropy in two orthogonal directions.

16.1 RANDOM MEDIA GENERATION

In order to study large assemblies with varying degrees of fabric anisotropy it was

necessary to develop a random particulate media generator computer code. Many

different techniques were considered which produced varying degrees of porosity and

anisotropy. Three particular schemes are discussed which provided assemblies with

desired fabric.

16.1.1 Strongly Anisotropic Particulate Media Generator

This generator produced assemblies with very high degrees of anisotropy with

respect to two orthogonal directions. The algorithms employed to generate the assemblies

can be described in the following steps.

1. An initial base layer of disks is placed along a horizontal line, with a spacing

distance between neighboring disk centers being varied randomly between one and

two disk diameters (see Fig. 16.1a).

2. Each pair of neighboring disks in the base layer is then used to generate a new

disk making contacting with a base layer pair, see Fig. 16. lb. The position of the

new disk is unique, and in this way a new layer of disks is formed.

3. To generate the next layer, a new disk is randomly generated to make contact

with the disks in the previous layer. This generation is made by constraining the

angle of the branch vectors of each newly constructed contact pair to lie in a

particular range (±150 for the cases shown) with respect to the vertical direction,
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see Fig. 16.1c. Thus this next layer is randomly generated.

4. The next layer of disks is generated in the same fashion as step 2 above, see

Fig. 16.1d.

5. The positions of left and right boundary disks of the new layer from step 4 are
determined in a special way. Left boundary disks are generated with a randomly

generated branch angle in the range (1150 - 1350) measured counter-clockwise

from the horizontal. Similarly the right boundary disk is generated in the same

fashion with a random branch vector angle in the range (450 - 750).
During any step if a disk generated overlaps with other disks, then a new trial disk

will be generated to replace it. Following these steps, large random assemblies of

particulate media with pronounced anisotropy can be quickly generated. An example

assembly generated by this scheme is shown in Fig. 16.2, and Fig. 16.3 illustrates the local

branch vector distribution as a function of the angular direction.

16.1.2 Moderately Anisotropic Random Media Generator
A second particulate media generator was constructed to produce assemblies with

moderately anisotropy. The following construction steps are used to generate these

particular granular systems.5 1. An initial base layer of contacting disks is formed such that the angle between

any pairs of branch vectors of disks in contact is randomly selected in the range

±200 measured from the horizontal, see Fig. 16.4a.

2. To generate the next layer, the left disk of the new layer is randomly set
(branch vector ±20" from the vertical) in contact with the left disk of the previous

layer. The other disks of the new layer are randomly generated from two groups.
One group includes disks that are in contact with their left neighbor as well as

with the disk in the previous layer. The second selection group includes disks
which are permitted to form contact only with its left neighbor. Thus by

randomly selecting disks from these two groups a new layer may be constructed,

see Fig. 16.4b. This procedure is then repeated for as many additional layers as

desired.
As befor,, if during any step a disk generated overlaps other disks, then a new

disk will be generated to replace it. Fig. 16.5 shows a generated assembly using this
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I moderately anisotropic scheme, and the distribution of local branch vectors for this

assembly is displayed in Fig. 16.6.

16.1.3 Weakly Anisotropic Random Media Generator

A final generator was developed to construct assemblies with small anisotropy.

I The scheme utilized the following procedures.

1. An initial disk forms the starting central point of the assembly. From this first

disk a branch angle is randomly generated to determine the position of a new

contacting disk, see Fig 16.7a. Similar steps are used to randomly generate the

second, third, fourth, and fifth disks which are in contact with the initial

generating disk (Fig. 16.7a).

2. From the existing assembly, randomly select a pair of disks. If a new disk can

be generated to contact with the two disks and not overlap any other existing

disks, this new disk will be added into the existing assembly (see Fig.16.7b). This

process is repeated over all possible disk pairs of the existing assembly.

Again as before disk overlaps are not allowed, and random retries are

initiated if an overlap is found. Fig. 16.8 illustrates a weakly anisotropic random

assembly produced using this algorithm. The local branch vector fabric distribution for

this assembly is shown in Fig. 16.9.

16.2 RESULTS AND DISCUSSION

The distinct element method was used to simulate the dynamic response of

assemblies generated by the previously described methods, and in this way the effect of

granular anisotropy on the wave motion characteristics could be determined. The contact

laws used in the modeling were the nonlinear hysteretic normal and tangential laws used

in our previous work. The simulations involved the comparison of the piopagation of

plane waves moving along orthogonal directions in the generated assemblies. The

transient nature of loadings was modeled using a triangular time dependent input loading

pulse with a peak value of 1000 N and a period of 60 gs. In order to represent a plane-

wave input loading, the time-dependent pulses were simultaneously applied on particles

along one of the horizontal or vertical boundaries of the assemblies. An imaginary

horizontal or vertical line was drawn near the boundary opposite to where the input

loadings were applied. If a branch vector of a pair particles in contact is intercepted by
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this imaginary line, the normal contact load between the particles was recorded. In this

fashion, the contribution of the individual particle contacts could be determined, and these

recorded loads were then summed and normalized with respect to the sum of the peak

values of the input loadings.

Fig. 16.10 shows this wave propagation simulation for the highly anisotropic

media. The normalized normal contact load profiles are shown for the case of horizontal

and vertical input loadings. It is obvious that for the wave propagating along vertical

direction, the attenuation is much smaller than that of a wave travelling along the

horizontal direction. Also note that the wave speed as determine by the arrival time of

the averaged piufile is different for the two propagational directions, with the vertical

wave having a significantly higher speed. These results follow qualitatively from the

local branch distribution diagram in Fig. 16.3. Since most branch vectors lie along the

vertical direction, the load transfer paths in that direction are rather continuous and

straight, while just the opposite would be true for load transfer paths along the horizontal

direction. Therefore the anisotropic media is a better propagator of waves in the vertical

direction.

The normalized normal contact load profiles for a moderately anisotropic random

assembly is shown in Fig. 16.11. For this assembly more local branch vectors occur along

the hori7ontal direction, and therefore the distinct element simulations indicate that the

horizontal wave attenuation is smaller than that along vertical direction. However, for

this case the wave velocities along both directions were found to be almost the same. By

checking the load transfer paths along vertical direction, it was found that there was one

continuous path along the left vertical boundary, and which contributed most of the

energy in the normalizeti ;ontact load profile. Waves travelling along this special path

take about the same time as along a continuous horizontal path. It was determined that

if this path was blocked, it would take more time for load to transfer from the bottom to

the top of the assembly and the wave speed of the averaged signal would be reduced.

The final simulation was conducted on the weakly anisotropic assembly shown in

Fig. 16.8. The normalized normal contact load versus time is shown in Fig. 16.12 for this

case. It can now be observed that the differences between the peak transmitted wave

profiles and the wave speeds are quite small. This agrees with the local branch vector
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distribution diagram which indicates that the assembly is nearly isotropic.These results indicate that granular anisotropy can have a significant -4rý-ct o-, *le

propagation of waves through such materials. Additional studies ot iarge random

assemblies are being undertaken, and a theoretical fabric framework is being developed.
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Fig. 16.1 Procedures used to generate strongly

anisotropic random assemblies
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Fig. 16.2 A strongly anisotropic random assembly Fig. 16.3 The branch vector distribution diagram
generated with the steps shown in of the assembly shown in Fig. 16.2
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Fig. 16.4 Procedures used to generate moderately
anisotropic random assemblies

Fig. 16.5 A moderately anisotropic random assembly Fig. 16.6 The branch vector distribution diagram
generated with the steps shown in of the assembly shown in Fig, 16.5
Fig. 16.4
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Fig. 16.8 A weakly anisotropic random assembly Fig. 16.9 The branch vector distribution diagram
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